Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add filters








Language
Year range
1.
Article in Chinese | WPRIM | ID: wpr-879111

ABSTRACT

The study is aimed through field experiments to study the effect of combined application of organic and chemical fertilizers on the growth and quality of Salvia miltiorrhiza, provide ideas for reducing fertilization while increasing the efficiency as well as improving the quality of produces. The experiment included 6 treatments viz., no fertilization(CK), full application of chemical fertilizer(F), 25% orga-nic fertilizer with 75% chemical fertilizer(M25), 50% organic fertilizer with 50% chemical fertilizer(M50), 75% organic fertilizer with 25% chemical fertilizer(M75), and fully apply organic fertilizer(M100). The results showed that:(1)from the perspective of yield and economic benefits, M75 was the best and M100 second;(2)for effective components, the combined application of organic and chemical fertilizers increased the content of main water-soluble components and the total content of effective components, among which M25 and M50 were better.


Subject(s)
Agriculture , Fertilizers/analysis , Nitrogen , Salvia miltiorrhiza , Soil
2.
Article in Chinese | WPRIM | ID: wpr-879108

ABSTRACT

Nitrogen fertilizers play an important role in the regulation of plant stress resistance. Impacts of nitrogen fertilizers on abiotic stress resistance and biotic stress resistance of Chinese materia medica(CMM) were summarized in this study. Adequate nitrogen application improves the abiotic stress resistance and weed resistance of CMM, however adverse effect appears when excess nitrogen is used. Generally, pest resistance decreases along with nitrogen deposition, while effects of nitrogen application on disease resistance vary with different diseases. Mechanisms underlying the impact of nitrogen fertilizers on plant stress resistance were also elucidated in this study from three aspects including physical defense mechanisms, biochemistry mechanisms and molecular defense mechanisms. Nitrogen availability modulates physical barrier of CMM like plant growth, formation of lignin and wax cuticle, and density of stomata. Growth of CMM promoted by nitrogen fertilizer may cause some decrease in pest resistance of CMM due to an increase in hiding places for pest along with plant growth. High ambient humidity caused by excessive plant growth facilitates the growth and development of CMM pathogen. Nitrogen application can also interfere with the accumulation of lignin in CMM which makes CMM more vulnerable to pest and pathogen attack. Stomatal closing delays due to nitrogen application is also a causal factor of increasing pathogen infection after nitrogen deposition. Biochemical defenses of plants are mainly achieved through nutrient elements, secondary metabolites, defense-related enzymes and proteins. Nutritional level of CMM and various antioxidant enzymes and resistance-related protein activities are elevated along with nitrogen deposition. These antioxidant enzymes can reduce the damage of reactive oxygen species content produced by plant in response to adversity and therefore enhance stress resistance of CMM. Researches showed that nitrogen application could also cause an increase in nitrogen-containing secondary metabolites content and a decrease in non-nitrogen-containing secondary metabolites content respectively. Nitrogen-mediated molecular defense mechanisms includes multiple plant hormones and nitric oxide signals. Plant hormones related to plant defense like salicylic acid, jasmonic acid and abscisic acid can be modulated by nitrogen application. Negative effect of nitrogen deposition was found on salicylic acid accumulation and the expression of related plant disease resistance genes. However, jasmonic acid level can be elevated by nitrogen. Nitric oxide signals constitute an important part of nitrogen mediated defense mechanisms. Nitric oxide signaling is related to many aspects of plant immunity. The roles of nitrogen fertilizers in CMM stress resistance are complex and may vary with different CMM varieties and environments. Further studies are urgently needed to provide a comprehensive understanding of how to improve stress resistance of CMM by using fertilizers.


Subject(s)
Abscisic Acid , China , Materia Medica , Nitrogen , Plant Growth Regulators
3.
Article in Chinese | WPRIM | ID: wpr-879107

ABSTRACT

Nitrogen is one of the most frequently used fertilizers in growth of Chinese medicinal plants(CMP). As in many other ecosystems, CMP ecosystem is also composed of plant-herbivore-natural enemy(tritrophic) interactions. Nitrogen fertilizer influences the growth and reproduction of CMP, and it is also able to heavily shape the ecosystem functions of CMP ecosystem through bottom-up forces. Understanding the specific effects of nitrogen fertilizer towards each trophic level will be beneficial to improve the resistance of CMP to herbivore and enhance the control efficiency of nature enemies to herbivore, and eventually, maximize the yield and quality of CMP. Most papers published on nitrogen use in plants focused mainly on the impact of nitrogen fertilization on CMP yield and quality. Influences of nitrogen application on CMP ecosystem get little attention at present. Therefore, this review summed up the potential effects of nitrogen fertilization on CMP ecosystem from perspectives of soil and tritrophic interactions. First of all, nitrogen fertilizer might decrease soil microbial biomass and altered the community structures of soil bacteria, fungi and protozoa. Negative effects of nitrogen fertilizer were found on biodiversity of soil bacteria and protozoa. Different fungi species respond differently to nitrogen fertili-zers. Nitrogen deposition can also decrease the soil pH. Decreases in soil microbial diversity and soil acidification can cause negative effects on CMP growth. In addition, nitrogen fertilizer could regulate the pest resistance of CMP including constitutive and inducible resistance. Both positive and negative effects of nitrogen application were found on pest resistance of CMP. Moreover, the development and predation of natural enemies were influenced by nitrogen deposition. Nitrogen influences natural enemies in many ways including plant volatiles, plant nutrient and structure and the supplementary food quality. Nectar and honeydew of plants and preys serve as important food source for natural enemies especially in early season when preys are still not available. Finally, the interactions between herbivores and their natural enemies were also shaped by nitrogen fertilizer in many aspects like increasing the nutritional content of prey and changing control efficiency of natural enemies. Some herbivores have evolved a strategy to sequester secondary metabolites which they absorbed from plant during their feeding. Studies showed that sequestration efficiency of secondary metabolites in prey could also be regulated by nitrogen. Parasitic, emergence, reproduction rate and longevity of parasites were found positively correlated with nitrogen deposition. Hopefully this study will shed light on practicable and economical application of nitrogen in cultivation of CMP.


Subject(s)
China , Ecosystem , Fertilizers , Nitrogen , Plants, Medicinal , Soil
4.
Article in Chinese | WPRIM | ID: wpr-879106

ABSTRACT

Nitrogen fertilizer has been the long-lasting crucial component in cultivation of Chinese materia medica(CMM) and crops for its profound effects on enhancing the productivity. In consideration of its role in better production, intensive and excessive application of N fertilizer is often found in CMM cultivation. Therefore, firstly, this review summarized various concentrations of N application with regards to different CMM and districts from the literatures published in the last two decades. The recommended concentration of nitrogen application of forty seven CMM species were covered in this review. We found that the optimum rates of nitrogen fertili-zer for different medicinal plants species were varied in the range between 0-1 035.55 kg·hm~(-2). Most of the optimum rates of nitrogen fertilizer for CMM in published researches fell between 100-199 kg·hm~(-2). The optimum rate of nitrogen fertilizer is not only related to amount of nitrogen required for different medicinal plants but also to soil fertilities of different fields. In addition, we outlined the diffe-rent effects of proper and excessive nitrogen deposition on yield of CMM. Proper nitrogen deposition benefits the yield of CMM, howe-ver, excessive nitrogen use accounts for a decrease in CMM yield. We elucidated that nutritional content, water use efficiencies, and photosynthesis capacity were major influencing factors. Researches showed that proper nitrogen fertilizer could promote the water use efficiencies of plants and boost photosynthesis. Consequently, the yield of CMM can be enhanced after nitrogen deposition. However, negative effects of nitrogen fertilizer were also found on plant including producing toxic substances to the soil and causing severe pest damages. Lastly we analyzed the impact of N fertilizer application on secondary metabolites which accounts for a large part of active pharmaceutical ingredients of CMM. It usually caused an increase in nitrogen-containing secondary metabolites content and a decrease in non-nitrogen-containing secondary metabolites content respectively. The potential underlying mechanisms are the different synthetic pathways of these metabolites and the plant nutritional status. Synthesis of non-nitrogen-containing secondary metabolites like phenols can be inhibited after nitrogen application because of the competition of the same precursor substances between metabolites synthesis and plant growth. To sum up, impacts and mechanisms of nitrogen fertilizer on yield and quality enhancement of CMM were discussed in this review. Negative effects of excessive nitrogen application on CMM should be paid special attention in CMM cultivation and prescription fertilization based on the field soil quality is strongly recommended. Overall, this review aims to provides insights on improving the proper application of N fertilizer in the cultivation of CMM.


Subject(s)
Agriculture , China , Fertilizers , Materia Medica , Nitrogen/analysis , Soil
5.
Article in Chinese | WPRIM | ID: wpr-827992

ABSTRACT

The ecological agriculture of Chinese materia medica(CMM) has become the most dynamic and promising new field in the global ecological agriculture. The development of ecological planting of CMM has become the national strategy of Chinese traditional medicine agriculture. It has been highly valued and has flourished throughout the country, and has formed some more mature ecological planting models of CMM. Based on the system level, this paper sorts out the common ecological cultivation patterns of CMM, and obtains five basic patterns: landscape pattern at the ecological landscape level, circulation pattern at the ecosystem level, stereo model at the bio-community level, biodiversity patterns at the level of biological populations and well-established models at the level of biological individuals. On this basis, eight common ecological planting techniques of CMM were obtained, includingwild tending techniques, fine agricultural farming techniques, directional cultivation techniques, soil improvement techniques, soil testing and fertilization techniques, mycorrhizal cultivation techniques, green control technology for pests and diseases and facility cultivation techniques.This paper aims to provide theoretical basis for scientific research and popularization and application of CMM ecological planting.


Subject(s)
Agriculture , Drugs, Chinese Herbal , Ecosystem , Humans , Materia Medica , Medicine, Chinese Traditional
6.
Article in Chinese | WPRIM | ID: wpr-827991

ABSTRACT

As an environment-friendly agriculture, ecological agriculture of Chinese materia medica(CMM) is being implemented in all parts of the country. Due to the stronger dependence on natural environmental conditions, ecological agriculture of CMM shows obvious regional differences in production practice. More mature CMM ecological planting patterns representative of each region were collected. It was found that common types of patterns in various regions of the country mainly included intercropping,intercropping,rotation planting mode, undergrowth planting mode, wild tending planting mode and landscape ecological planting mode. Based on the Construction Plan of National Dao-di Herbs Production Base(2018-2025) and Chinese Medicine Division, this paper systematically sorts out the pattern of ecological planting of CMM in the 8-avenue medicinal materials production areas according to the varieties and regions. The specific pattern of ecological planting of CMM included the ginseng undergrowth planting pattern in northeastern China, the bionics wild ecological planting of the Forsythia suspensa in northern China, the Fritillaria thunbergii-rice rotation in eastern China, the imitation wild planting pattern under the Polygonatum cyrtonema in central China, the planting pattern of the Fructus amomi under forest in southern China, the Ligusticum chuanxiong-rice rotation pattern in the Southwest, wild tending of Glycyrrhiza uralensis in the Northwest, and rhubarb imitation wild planting pattern in Qinghai-Tibet area. Finally, it is expected to provide reference for the screening and popularization of ecological planting patterns of other CMMs in various distribution areas.


Subject(s)
China , Drugs, Chinese Herbal , Ligusticum , Materia Medica , Medicine, Chinese Traditional , Tibet
7.
Article in Chinese | WPRIM | ID: wpr-827990

ABSTRACT

With the rapid development of comprehensive health industry, the demand for Chinese medicinal materials is increasing. There is also a growing demand for land for the cultivation of Chinese medicinal materials.Based on the analysis of the demand characteristics of planting habitats for Chinese medicinal herbs, this paper finds that compared with the cultivated environment, the wild environment is more conducive to the improvement of the quality and stress resistance of medicinal plants. The eco-planting for Chinese medicinal materials is the only way to achieve high quality, efficient and sustainable production of traditional Chinese medicine. Therefore, according to the habitat distribution characteristics of wild medicinal plants, combined with the current situation of land resource utilization in China and the increasing demand for land for Chinese herbal medicine cultivation, the land use strategy of Chinese herbal medicine ecological agriculture was proposed. ① To vigorously develop underwood planting and change the existing field cultivation mode. ② To make full use of mountainous areas and barren slopes to carry out wild planta tending or planting imitates wild condition. ③ According to the development law and biological characteristics of medicinal plants, the land resources should be developed and used rationally according to local conditions.This can not only meet the requirements of the specific growth environment of Chinese medicinal materials, realize the sustainable development of the Chinese medicinal materials industry, but also increase the economic income of people in mountainous areas, provide scientific and effective solutions for the land use of Chinese medicinal materials, and also have important significance for the protection of wild Chinese medicinal materials.


Subject(s)
Agriculture , China , Drugs, Chinese Herbal , Materia Medica , Medicine, Chinese Traditional , Plants, Medicinal
8.
Article in Chinese | WPRIM | ID: wpr-774523

ABSTRACT

Rhizosphere bacteria play a vital role in plant nutrition absorption,growth and disease resistance. In this study,high-throughput sequencing technology was used to analyze the rhizosphere bacterial communities of Salvia miltiorrhiza and S. miltiorrhiza f. alba. Moreover,the function of dominant rhizosphere bacterial communities was analyzed. We found that Sphingobacteriales,Sphingomonadales and Nitrosomonadaceae were both dominant and specific bacteria in the rhizosphere of S. miltiorrhiza. The main functions of dominant rhizosphere bacteria communities in both species include promoting transformation of soil nutrients,improving plant immunity and ability of stress tolerance. This study was the first to compare rhizobacterial communities structure and function of S. miltiorrhiza and S. miltiorrhiza f. alba,which provided a new theoretical reference for studing the rhizosphere mechanism of healthy S. miltiorrhiza planting in the future.


Subject(s)
Bacteria , Classification , High-Throughput Nucleotide Sequencing , Rhizosphere , Salvia miltiorrhiza , Microbiology , Soil Microbiology
9.
Article in Chinese | WPRIM | ID: wpr-775388

ABSTRACT

Nowadays, the cultivation of traditional Chinese medicinal materials is faced with the problems of pesticides illegal uses and pesticides residues. In the early period of eco-agriculture of Chinese materia medica, the uses of pesticides in special time is still inevitable. However, the registration of pesticides for Chinese medicinal materials now is far from enough to meet demand. So it is necessary to publish policies to expand the pesticides registration for Chinese medicinal materials. We collected and analyzed the data of pesticide registration for Chinese medicinal materials, the results showed that till March 2018, there were 10 kinds of Chinese medicinal materials, 91 pesticide products and 46 kinds of pesticide ingredients registered. Based on the current status of the pesticide management in China and the experience of the registration pesticide for minor crops in countries around the world, we point out that the pesticide registration for Chinese medicinal materials should be carried out in the form of minor crops and some specific methods are also provided in this paper.


Subject(s)
China , Medicine, Chinese Traditional , Pesticide Residues , Pesticides , Plants, Medicinal , Chemistry
SELECTION OF CITATIONS
SEARCH DETAIL