Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Add filters

Year range
Article in Chinese | WPRIM | ID: wpr-828378


We used exogenous GA_3 to break the seed dormancy of Thesium chinense. We used high-throughput sequencing technology was used to sequence the transcriptome of dormant seed embryos and dormancy breaking seed embryos of Th. chinense, and the data was analyzed bioinformatically and systematically. The results showed that exogenous GA_3 could effectively break the seed dormancy of Th. chinense; 73 794 up-regulated genes and 42 776 down regulated genes were obtained by transcriptome sequencing; 116 570 diffe-rential genes were annotated by GO function to GO items such as metabolism process, cell process, cell, cell component, binding and catalytic activity. A total of 133 metabolic pathways were found by Pathway analysis of 26 508 differentially expressed genes. In the process of dormancy release, DEGs were mainly enriched in translation, carbohydrate metabolism, folding, classification, degradation and amino acid metabolism. Based on the annotation results in KEGG database, 20 metabolic pathways related to dormancy release were found. Dormancy release of Th. chinense seeds is a complex biological process, including cell morphology construction, secondary metabolite synthesis, sugar metabolism and plant signal transduction, among which plant hormone signal transduction is one of the key factors to regulate dormancy release. The results of qRT-PCR showed that the sequencing results were consistent with the actual results.

Gene Expression Profiling , Gene Expression Regulation, Plant , Plant Dormancy , Plant Growth Regulators , Santalaceae , Seeds , Transcriptome
Article in Chinese | WPRIM | ID: wpr-878857


The purpose of this study was to explore the expression pattern of miRNA in the process of embryo dormancy and provide a reference for the mechanism of regulating seed dormancy and germination by miRNA. We used high-throughput sequencing technology, bioinformatics analysis and real-time fluorescent quantitative PCR(qPCR) technology to sequence, screen and identify miRNAs of dormant and dormant embryos. The results showed that there were 23 811 977, 24 276 695, 20 611 876 and 20 601 811 unique sequences in the four sample libraries during the period of dormancy and dormancy release. MiRNAs are mainly distributed between 21 and 24 nt, among which the length of 24 nt occurred most frequently. A total of 31 known miRNAs were identified, belonging to 13 different families. 93 new miRNAs were predicted by bioinformatics software. Ten miRNAs(mir156 a-5 p, mir160 a-5 p, mir160 h-1, mir169 a-5 p, mir157 d, mir159 a-1, mir395-3, mir156 f-5 p, mir156-2 and mir171 a-3 p) were screened out. In this study, 10 miRNAs related to seed dormancy release were identified. The target genes mainly involved carbohydrate metabolism, plant hormone signal transduction, cell division and growth. The results of qRT-PCR showed that the sequencing results were consistent with the actual results.

Gene Expression Regulation, Plant , Humans , Liliaceae , MicroRNAs , Plant Dormancy , RNA, Plant , Seeds
Article in Chinese | WPRIM | ID: wpr-878828


In this study, the roots, stems and leaves of diploid and autotetraploid Dendrobium huoshanense were used as materials to compare their contents of polysaccharides and alkaloids, and the transcriptome sequencing analysis was carried out. The results showed that the contents of polysaccharides and alkaloids in the roots, stems and leaves of tetraploid were 7.6%, 34.5%, 17.2%, 0.01%, 0.024% and 0.035% higher than those of diploid D. huoshanense, respectively. The contents of active components in different tissues were significantly different. There were 3 687 differentially expressed genes in diploid and tetraploid D. huoshanense, of which 2 346 genes were up-regulated and 1 341 down regulated. Go functional analysis showed that these genes were mainly involved in growth and development, stress resistance and other related functions. KEGG pathway analysis showed that most of the differential genes were concentrated in the processes of carbon metabolism, signal transduction, carbohydrate metabolism, amino acid metabolism and energy metabolism. The differential expression of key genes involved in the metabolism of polysaccharides, terpenes and polyketones, amino acid metabolism, hormone synthesis and signal transduction in diploid and tetraploid plants may be the main reason for the high energy content, the increase of active components and the growth potential of tetraploid plants.

Alkaloids , Dendrobium/genetics , Diploidy , Plant Roots , Polysaccharides , Transcriptome