Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Add filters

Year range
Article in English | WPRIM | ID: wpr-812547


Boiling processing is commonly used in post-harvest handling of White Paeony Root (WPR), in order to whiten the herbal materials and preserve the bright color, since such WPR is empirically considered to possess a higher quality. The present study was designed to investigate whether and how the boiling processing affects overall quality of WPR. First, an ultra-high performance liquid chromatography quadrupole/time-of-flight mass spectrometry-based metabolomics approach coupled with multivariate statistical analysis was developed to compare the holistic quality of boiled and un-boiled WPR samples. Second, ten major components in WPR samples boiled for different durations were quantitatively determined using high performance liquid chromatography to further explore the effects of boiling time on the holistic quality of WPR, meanwhile the appearance of the processed herbal materials was observed. The results suggested that the boiling processing conspicuously affected the holistic quality of WPR by simultaneously and inconsistently altering the chemical compositions and that short-time boiling processing between 2 and 10 min could both make the WPR bright-colored and improve the contents of major bioactive components, which were not achieved either without boiling or with prolonged boiling. In conclusion, short-term boiling (2-10 min) is recommended for post-harvest handling of WPR.

Chromatography, High Pressure Liquid , Methods , Drugs, Chinese Herbal , Chemistry , Reference Standards , Hot Temperature , Mass Spectrometry , Methods , Paeonia , Chemistry , Plant Roots , Chemistry , Technology, Pharmaceutical , Water
Article in Chinese | WPRIM | ID: wpr-284444


<p><b>OBJECTIVE</b>Observe the effects of Goutengsan on SOD, MAO-B, GSH-PX, NO, LDH, index of brain, rate of death and so on in rats to study therapeutic effects and mechanism of Goutengsan on Alzheimer dementia (AD) model.</p><p><b>METHOD</b>One hundred and twenty rats were randomly divided into 6 groups, 3 experimental groups of which were daily administrated with Goutengsan extract whereas the model and control groups were given NS (0.01 mL x g(-1)). Aniracetam at 0.1 g x kg(-1) served as a positive control. At the 5th day after administration, all groups except the control were administrated (ip) with AlCl3 (100 mg x kg(-1) ) for successive 50 days at 1 day interval. After administration, the death rate, body weight, training scores, brain index, MAO-B, SOD, GSH-Px in brain and NO, LDH in serum were determined.</p><p><b>RESULT</b>The brain index, SOD, GSH-Px activities as well as NO content of drug-treated groups were strikingly higher that of model group, and had not obvious difference from that of normal group except content of LDH was higher.</p><p><b>CONCLUSION</b>Goutengsan could increase the brain index, cut down the rate of death, stable increase of body weight, promote the endogenous antioxidant activity, enhance the clearance of lipid peroxide and other metabolic waste, inhibit the MAO-B activity, reduced the leakage of LDH and maintain the content of NO at a normal level. Therefore Goutengsan could protect cells, delay senile, improve symptoms of AD.</p>

Aluminum Compounds , Pharmacology , Alzheimer Disease , Drug Therapy , Metabolism , Animals , Body Weight , Brain , Metabolism , Chlorides , Pharmacology , Disease Models, Animal , Drugs, Chinese Herbal , Pharmacology , Female , Glutathione Peroxidase , Metabolism , Lipid Peroxidation , Male , Malondialdehyde , Metabolism , Memory , Nitric Oxide , Metabolism , Oxidative Stress , Pyrrolidinones , Pharmacology , Random Allocation , Rats , Rats, Sprague-Dawley , Superoxide Dismutase , Metabolism