Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add filters








Language
Year range
1.
Article in Chinese | WPRIM | ID: wpr-878924

ABSTRACT

The aim of this paper was to investigate the effect of berberine hydrochloride on the cell wall integrity of Candida albicans hypha. The minimal inhibitory concentration(MIC) of berberine hydrochloride against clinical and standard C. albicans strains was detected by micro liquid-based dilution method; the effect of berberine hydrochloride on the colony formation of C. albicans SC5314 was investigated by spot assay; the effect of berberine hydrochloride on the metabolism of C. albicans SC5314 hypha was checked by XTT reduction assay, and the viability of C. albicans SC5314 hypha was tested by fluorescent staining assay. The effect of berberine hydrochloride on the morphology of C. albicans SC5314 hypha was examined by scanning electron microscope. The changes in the cell wall of C. albicans SC5314 hypha after berberine hydrochloride treatment were detected by transmission electron microscopy. The effect of berberine hydrochloride on β-glucan from C. albicans SC5314 was detected by flow cytometry. The effect of berberine hydrochloride on hypha-specific gene ECE1 and β-glucan synthase genes FKS1 and FKS2 in C. albicans was examined by qRT-PCR. The results showed that berberine hydrochloride showed a strong inhibitory effect on both clinical and standard strains of C. albicans, and the MIC was 64-128 μg·mL~(-1). Spot assay, XTT redunction assay and fluorescent staining assay showed that with the increase of berberine hydrochloride concentration, the viability of C. albicans SC5314 gradually decreased. The transmission electron microscopy scanning assay showed that this compound could cause cell wall damage of C. albicans. The flow cytometry analysis showed the exposure degree of C. albicans β-glucan. The qRT-PCR further showed that berberine hydrochloride could significantly down-regulate hypha-specific gene ECE1 and β-glucan synthase-related gene FKS1 and FKS2. In conclusion, this compound can down-regulate C. albicans and β-glucan synthase-related gene expressions, so as to destroy the cell wall structure of C. albicans, expose β-glucan and damage the integrity of the wall.


Subject(s)
Antifungal Agents/pharmacology , Berberine/pharmacology , Candida albicans/genetics , Cell Wall , Hyphae , Microbial Sensitivity Tests
2.
Article in Chinese | WPRIM | ID: wpr-827996

ABSTRACT

To observe the efficacy of cinnamaldehyde on dextran sulfate sodium(DSS)-induced ulcerative colitis(UC) with Can-dida albicans(Ca) colonization and its effect on dectin-1/TLRs/NF-κB signaling pathway in mice. C57 BL/6 mice were randomly divided into normal group, DSS group, DSS+Ca group, cinnamaldehyde group and mesalazine group. Mice in DSS+Ca group were given Ca(1×10~8 CFU per mouse) through intragastrical administration for 4 consecutive days and then distilled water with 3.0% DSS for 7 consecutive days. In cinnamaldehyde group and mesalazine group, in addition to the induction method of the DSS+Ca group, mice were given 75 mg·kg~(-1) cinnamaldehyde and 200 mg·kg~(-1) mesalazine accompanied with 3.0% DSS for 7 consecutive days, respectively. Mice in normal group and DSS group were correspondingly administered with distilled water. The general conditions of the mice were observed daily, the diseased activity index(DAI) score was calculated, and fungal loads of feces were detected by plate method. The mice were sacrificed on day 12, colon length was measured, colon mucosa damage index(CMDI) score was calculated, and histopathological analysis was carried out by HE staining. Anti-saccharomces cerevisiae antibody(ASCA) and β-1,3-glucan in serum, and TNF-α, IL-1β, IL-6, IL-8, IL-10 in serum and colon tissue were detected by ELISA. The contents of β-1,3-glucan and macrophage infiltration in colon tissues were examined by immunofluorescence staining. The protein expressions of dectin-1, TLR2, TLR4 and NF-κB were detected by Western blot and immunohistochemistry staining. The results showed that cinnamaldehyde could significantly improve the general conditions of UC mice with Ca colonization, decrease DAI and histopathological scores, reduce intestinal mucosal congestion, erosion and colon shortening, decrease Ca load in mouse feces and tissues, down-regulate the contents of ASCA and β-1,3-glucan in serum, reduce the contents of TNF-α, IL-1β, IL-6, IL-8 and increase IL-10 in serum and colon tissues, inhibit macrophages infiltration and down-regulate the protein expression of dectin-1, TLR2, TLR4 and NF-κB in colon tissue. These results suggested that cinnamaldehyde had a therapeutic effect on UC mice with Ca colonization, which might be related to the inhibition of Ca proliferation, the regulation of dectin-1/TLRs/NF-κB signaling pathways and the coordination of the balance between pro-inflammatory and anti-inflammatory factors.


Subject(s)
Acrolein , Animals , Candida albicans , Colitis, Ulcerative , Colon , Dextran Sulfate , Disease Models, Animal , Lectins, C-Type , Mice , NF-kappa B , Signal Transduction
3.
Article in Chinese | WPRIM | ID: wpr-774597

ABSTRACT

This study aimed to investigate the effect of butyl alcohol extract of Baitouweng Decoction( BAEB) on Candida albicans biofilms based on pH signal pathway. The morphology of biofilms of the pH mutants was observed by scanning electron microscope. The biofilm thickness of the pH mutants was measured by CLSM. The biofilm activity of the pH mutants was analyzed by microplate reader.The biofilm damage of the pH mutants was detected by flow cytometry. The expression of pH mutant biofilm-related genes was detected by qRT-PCR. The results showed that the deletion of PHR1 gene resulted in the defect of biofilm,but there were more substrates for PHR1 complementation. BAEB had no significant effect on the two strains. RIM101 gene deletion or complementation did not cause significant structural damage,but after BAEB treatment,the biofilms of both strains were significantly inhibited. For the biofilm thickness,PHR1 deletion or complementation caused the thickness to decrease,after BAEB treatment,the thickness of the two strains did not change significantly. However,RIM101 gene deletion or complementation had little effect on the thickness,and the thickness of the two strains became thinner after adding BAEB. For biofilm activity,PHR1 deletion or complementation and RIM101 deletion resulted in decreased activity,RIM101 complementation did not change significantly; BAEB significantly inhibited biofilm activity of PHR1 deletion,PHR1 complemetation,RIM101 deletion and RIM101 complemetation strains. For the biofilm damage,PHR1 gene deletion or complementation,RIM101 gene deletion or complementation all showed different degrees of damage; after adding BAEB,the damage rate of PHR1 deletion or complementation was not significantly different,but the damage rate of RIM101 deletion or complementation was significantly increased. Except to the up-regulation of HSP90 gene expression,ALS3,SUN41,HWP1,UME6 and PGA10 genes of PHR1 deletion,PHR1 complementation,RIM101 deletion,and RIM101 complementation strains showed a downward expression trend. In a word,this study showed that mutations in PHR1 and RIM101 genes in the pH signaling pathway could enhance the sensitivity of the strains to the antifungal drug BAEB,thus inhibiting the biofilm formation and related genes expression in C. albicans.


Subject(s)
1-Butanol , Biofilms , Candida albicans , Drugs, Chinese Herbal , Pharmacology , Fungal Proteins , Gene Expression Regulation, Fungal , Hydrogen-Ion Concentration , Plant Extracts , Pharmacology , Signal Transduction
4.
Article in Chinese | WPRIM | ID: wpr-771507

ABSTRACT

The aim of this paper was to investigate the inhibitory effect of extract of Coptidis Rhizoma(ECR) on invasion of Candida albicans hyphae in vitro.XTT reduction method was used to evaluate the metabolic activity of C.albicans.The colony edge growth of C.albicans was observed by solid medium.The growth of C.albicans hyphae was determined on semi-solid medium.The morphology and viability changes of C.albicans hyphae were assessed by scanning electron microscope and fluorescence microscope.qRT-PCR method was used to detect the ALS3 and SSA1 expression of C.albicans invasin genes.The results showed that the metabolic viability by XTT method detected that the activity of C.albicans was gradually decreased under the intervention of 64,128 and 256 mg·L-1 of ECR respectively.128,256 mg·L-1 of ECR significantly inhibited colony folds and wrinkles on solid medium and the hyphal invasion in semi-solid medium.Scanning electron microscopy and fluorescence microscopy showed that 128,256 mg·L-1 of ECR could inhibit the formation of C.albicans hyphae.qRT-PCR results showed that the expression of invasin gene ALS3 and SSA1 was down-regulated,and especially 256 mg·L-1 of ECR could down-regulate the two genes expression by 4.8,1.68 times respectively.This study showed that ECR can affect the invasiveness of C.albicans by inhibiting the growth of hyphae and the expression of invasin.


Subject(s)
Adenosine Triphosphatases , Genetics , Candida albicans , Drugs, Chinese Herbal , Pharmacology , Fungal Proteins , Genetics , Gene Expression Regulation, Fungal , HSP70 Heat-Shock Proteins , Genetics , Hyphae , Microscopy, Electron, Scanning
5.
Article in Chinese | WPRIM | ID: wpr-687358

ABSTRACT

To investigate the mechanism of n-butanol extract of Pulsatilla decoction (BAEB) against murine ulcerative colitis (UC) model induced by DSS combined with Candida albicans (CA) colonization, mice were randomly divided into normal control group, DSS group, DSS+CA group, BAEB high, medium and low dose group, and positive drug Mesalazine group. The general condition of mice was observed, fungal loads of murine intestinal contents were detected by plate method, colonic pathological change of mice was examined by HE staining. ASCA in serum and IL-6, IL-8, IL-1β, HBD-2, HBD-3 in colonic mucosa were detected by ELISA. The results showed that, compared with DSS group, the general condition and ASCA in serum had no obvious change for DSS+CA group, but the fungal loads in intestinal contents, the colonic pathological damage, and the levels of IL-6, IL-8, IL-1β, HBD-2, HBD-3 in colonic mucosa were greater than that of DSS group. High dose of BAEB group and Mesalazine group could improve the colonic pathology, decrease IL-6, IL-8, IL-1β, HBD-2, HBD-3 expression level. In conclusion, BAEB could effectively improve the UC symptoms in mice induced by DSS combined with CA colonization, and inhibit the inflammatory factors such as IL-6, imply that BAEB is of important value for the treatment of intestinal fungal-related colitis.

6.
Article in Chinese | WPRIM | ID: wpr-335721

ABSTRACT

To investigate the inhibitory effect and mechanism of chloroform extracts from Longdan Xiegan decoction(CELX) against hydrolytic enzymes activity of Candida albicans isolated from vulvovaginal candidiasis(VVC) patients. Secreted aspartyl proteinase(Sap), phospholipase(PL) and lipase(Lip) positive strains were identified from 15 strains of C. albicans with milk culture medium, egg yolk culture medium and tween-80 medium, respectively. Then, the activities of Sap, PL, and Lip were detected in the above media. qRT-PCR was used to detect the changes in gene expressions of aspartic protease(SAP1-7,10), phospholipase B(PLB1-2) and lipase(LIP3-6). Secreted aspartyl proteinase and phospholipase of 15 VVC clinical strains were positive, and lipase of 11 strains were positive. Compared with the blank control group, the drug CELX-containing medium(milk medium, egg yolk culture medium, tween-80 medium) experiment showed that the sedimentation of colonies decreased gradually in each culture medium with the increase of CELX dose. When the concentration of CELX was 256 mg•L⁻¹, the colony almost disappeared, which indicated the enzyme activity was significantly weakened. The results of qRT-PCR showed that SAP1, SAP2, SAP3, SAP4, SAP7, SAP9 and SAP10 were down-regulated by 62%, 55%, 62%, 84%, 61%, 51%, 68%, respectively, except for SAP5 and SAP6; and PLB1, LIP3, LIP4, LIP6 were down-regulated by 67%, 51%, 54%, 55%, respectively. The findings suggested that CELX may inhibit the activities of Sap, PL, and Lip, which are important virulence factors of C. albicans.

7.
Article in Chinese | WPRIM | ID: wpr-275158

ABSTRACT

Quorum sensing of bacteria and its specific gene expression regulation have a very important role in bacterial biofilm formation. LuxS and agr are the key regulatory genes in quorum sensing of Staphylococcus epidermidis, and RNA Ⅲ is the effector molecule of agr system. In order to evaluate the effects of sodium houttuyfonate in combination with erythromycin on the transcription level of S. epidermidis, serial dilution method was used to determine the MIC of sodium houttuyfonate, erythromycin and vancomycin on S. epidermidis, and fluorescent quantitative PCR method was used to detect the transcription levels of luxS, agr/RNAⅢ in different time periods after treatment on S. epidermidis by sodium houttuyfonate in combination with erythromycin, vancomycin, and erythromycin alone. Our results showed that in treatment by 1/2MIC, 1/4MIC sodium houttuyfonate, 1/2MIC sodium houttuyfonate +1/2MIC erythromycin, 1/4MIC sodium houttuyfonate+1/4MIC erythromycin, and 1/8MIC sodium houttuyfonate+1/8MIC erythromycin for ATCC 35984, they could rapidly up-regulate the expression of luxS of S. epidermidis from the beginning as compared with negative control, with significant differences (P<0.05); furthermore, sodium houttuyfonate can still up-regulate the expression of luxS even after treatment for 6, 12 and 48 h. Sodium houttuyfonate in MIC and 1/2MIC concentration can significantly down-regulate the expression of agr (P<0.05); 1/2MIC sodium houttuyfonate+1/2MIC erythromycin, 1/4MIC sodium houttuyfonate+1/4MIC erythromycin, can also significantly down-regulate the expression of agr in 6 h, 12 h and 24 h(P<0.05). Sodium houttuyfonate in MIC, can significantly down-regulate the expression of RNA Ⅲ (P<0.05), and 1/2MIC sodium houttuyfonate+1/2MIC erythromycin can also significantly down-regulate the expression of RNAⅢ(P<0.05). Therefore, our presented results showed that sodium houttuyfonate in combination with erythromycin can rapidly up-regulate the transcription of luxS of S. epidermidis, and can down-regulate the expression of agr/RNA Ⅲ in certain concentrations, and suggested that sodium houttuyfonate in combination of erythromycin could inhibit mutual aggregation between S. epidermidis and biofilm bacteria, inhibit membrane nutrition and formation of water transport channels, prevent separation of bacterial cells in biofilm, and inhibit the formation of bacterial exotoxin of S. epidermidis.

8.
Article in Chinese | WPRIM | ID: wpr-351303

ABSTRACT

Sodium houttuyfonate (SH) is a derivative of effective component of a Chinese material medica, Houttuynia cordata, which is applied in anti-infection of microorganism. But, the antimicrobial mechanisms of SH still remain unclear. Here, we firstly discovered that SH effectively inhibits the three types of virulence related motility of.Pseudomonas aeruginosa, i.e., swimming, twitching and swarming. The plate assay results showed that the inhibitory action of SH against swimming and twitching in 24 h and swarming in 48 h is dose-dependent; and bacteria nearly lost all of the motile activities under the concentration of 1 x minimum inhibitory concentration (MIC) (512 mg x L(-1) same as azithromycin positive group (1 x MIC, 16 mg x L(-1)). Furthermore, we found that the expression of structural gene flgB and pilG is down-regulated by SH, which implies that inhibitory mechanism of SH against motility of P. aeruginosa may be due to the inhibition of flagella and pili bioformation of P. aeruginosa by SR Therefore, our presented results firstly demonstrate that SH effectively inhibits the motility activities of P. aeruginosa, and suggest that SH could be a promising antipseudomonas agents in clinic.


Subject(s)
Alkanes , Pharmacology , Anti-Bacterial Agents , Pharmacology , Bacterial Proteins , Genetics , Metabolism , Biofilms , Drugs, Chinese Herbal , Pharmacology , Fimbriae, Bacterial , Genetics , Metabolism , Houttuynia , Chemistry , Pseudomonas aeruginosa , Cell Biology , Genetics , Virulence , Sulfites , Pharmacology , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL