Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add filters








Year range
1.
Acta Pharmaceutica Sinica B ; (6): 2138-2151, 2023.
Article in English | WPRIM | ID: wpr-982831

ABSTRACT

Using chemoproteomic techniques, we first identified EIF2AK2, eEF1A1, PRDX3 and VPS4B as direct targets of berberine (BBR) for its synergistically anti-inflammatory effects. Of them, BBR has the strongest affinity with EIF2AK2 via two ionic bonds, and regulates several key inflammatory pathways through EIF2AK2, indicating the dominant role of EIF2AK2. Also, BBR could subtly inhibit the dimerization of EIF2AK2, rather than its enzyme activity, to selectively modulate its downstream pathways including JNK, NF-κB, AKT and NLRP3, with an advantage of good safety profile. In EIF2AK2 gene knockdown mice, the inhibitory IL-1β, IL-6, IL-18 and TNF-α secretion of BBR was obviously attenuated, confirming an EIF2AK2-dependent anti-inflammatory efficacy. The results highlight the BBR's network mechanism on anti-inflammatory effects in which EIF2AK2 is a key target, and inhibition of EIF2AK2 dimerization has a potential to be a therapeutic strategy against inflammation-related disorders.

2.
Acta Pharmaceutica Sinica B ; (6): 3067-3079, 2023.
Article in English | WPRIM | ID: wpr-982900

ABSTRACT

A series of new monobactam sulfonates is continuously synthesized and evaluated for their antimicrobial efficacies against Gram-negative bacteria. Compound 33a (IMBZ18G) is highly effective in vitro and in vivo against clinically intractable multi-drug-resistant (MDR) Gram-negative strains, with a highly druglike nature. The checkerboard assay reveals its significant synergistic effect with β-lactamase inhibitor avibactam, and the MIC values against MDR enterobacteria were reduced up to 4-512 folds. X-ray co-crystal and chemoproteomic assays indicate that the anti-MDR bacteria effect of 33a results from the dual inhibition of the common PBP3 and some class A and C β-lactamases. Accordingly, preclinical studies of 33a alone and 33a‒avibactam combination as potential innovative candidates are actively going on, in the treatment of β-lactamase-producing MDR Gram-negative bacterial infections.

3.
Acta Pharmaceutica Sinica B ; (6): 2299-2312, 2020.
Article in English | WPRIM | ID: wpr-881112

ABSTRACT

Programmed cell death-1 (PD-1)/programmed cell death ligand-1 (PD-L1) blocking therapy has become a major pillar of cancer immunotherapy. Compared with antibodies targeting, small-molecule checkpoint inhibitors which have favorable pharmacokinetics are urgently needed. Here we identified berberine (BBR), a proven anti-inflammation drug, as a negative regulator of PD-L1 from a set of traditional Chinese medicine (TCM) chemical monomers. BBR enhanced the sensitivity of tumour cells to co-cultured T-cells by decreasing the level of PD-L1 in cancer cells. In addition, BBR exerted its antitumor effect in Lewis tumor xenograft mice through enhancing tumor-infiltrating T-cell immunity and attenuating the activation of immunosuppressive myeloid-derived suppressor cells (MDSCs) and regulatory T-cells (Tregs). BBR triggered PD-L1 degradation through ubiquitin (Ub)/proteasome-dependent pathway. Remarkably, BBR selectively bound to the glutamic acid 76 of constitutive photomorphogenic-9 signalosome 5 (CSN5) and inhibited PD-1/PD-L1 axis through its deubiquitination activity, resulting in ubiquitination and degradation of PD-L1. Our data reveals a previously unrecognized antitumor mechanism of BBR, suggesting BBR is small-molecule immune checkpoint inhibitor for cancer treatment.

4.
Acta Pharmaceutica Sinica B ; (6): 629-638, 2018.
Article in English | WPRIM | ID: wpr-690877

ABSTRACT

Twenty-six novel tricyclic sophoridinic and matrinic derivatives containing a common chlorinated benzene fragment were designed, synthesized and evaluated for their anti-ebolavirus (EBOV) activities. Structure-activity relationship analysis indicated: (i) 12-dichlorobenzyl motif was beneficial for the activity; (ii) the chiral configuration at C5 atom might not affect the activity much. Among the target compounds, compound exhibited the most potent potency against EBOV with an IC value of 5.29 μmol/L and an SI value of over 37.8. Further anti-EBOV assay of identified its high effectiveness, and anti-MARV assay of suggested its inspiring broad-spectrum anti-filovirus activity. The results provided powerful information on further strategic optimization and development of this kind of compounds against filoviruses.

5.
Chinese Pharmacological Bulletin ; (12): 1236-1241,1242, 2016.
Article in Chinese | WPRIM | ID: wpr-604499

ABSTRACT

Aim To investigate the ameliorative effects pseudoberberine(Y53), a berberine(BBR) analogue, on diabetic nephropathy( DN) in streptozotocin( STZ)-induced diabetic mice. Methods Diabetes mellitus ( DM) of the C57BL/6J mice was induced by intraper-itoneal injection of STZ at 120 mg·kg-1 . The diabetic animals were divided into 4 groups, which were orally treated with saline, 50 mg · kg-1 of BBR, 50 mg · kg-1 of Y53 or 5 mg · kg-1 of rosiglitazone ( ROSI ) , respectively. During and after the experiment, the u-rine, blood, serum and kidney of the animals were harvested for determination of relevant parameters by kits. Kidney tissues of the mice were subjected to pathological examination by hematoxylin & eosin( HE) staining;mRNA and protein expression levels of target genes in the kidney were determined by quantitative re-al-time reverse transcriptase-polymerase chain reaction ( qRT-PCR) and Western blot, respectively. Results Y53 greatly reduced the fasting blood glucose ( FBG ) and glycosylated hemoglobin( GHb) , improved diabet-ic symptoms such as polyphagia and polyuria in the di-abetic mice( P<0. 01 vs DM control group) . Y53 po-tently reduced the blood urea nitrogen ( BUN ) , serum creatinine( Scr) , 24 h urinary protein, kidney index, serum and kidney advanced glycation end-products ( AGEs) and nitric oxide( NO) , as well as kidney cho-lesterol( CHO ) and triglyceride ( TG ) contents ( P <0. 05 or P<0. 01 vs DM control group) . In the patho-logical examination, Y53 greatly restored kidney mor-phology and suppressed glomerular sclerosis( P<0. 001 vs DM control group). In addition, Y53 significantly reduced the renal expression of fibrosis-related genes, such as the transforming growth factor-β1 ( TGF-β1 ) and smad2(P<0. 01 vs DM control group). The reno-protective efficacies of Y53 were superior to those of BBR and ROSI in our study ( P<0. 05 or P<0. 01 ) . Conclusions The BBR analogue Y53 has potent ac-tivities in ameliorating renal injury and restoring renal function in STZ-induced diabetic mice. Y53 may be developed as a novel kind of agent for the treatment of DN in the future.

6.
Acta Pharmaceutica Sinica B ; (6): 222-228, 2016.
Article in English | WPRIM | ID: wpr-309964

ABSTRACT

Taking 12-N-p-chlorobenzyl sophoridinol 2 as a lead, a series of novel sophoridinic derivatives with various 3'-substituents at the 11-side chain were synthesized and evaluated for their anticancer activity from sophoridine (1), a natural antitumor medicine. Among them, the sophoridinic ketones 5a-b, alkenes 7a-b and sophoridinic amines 14a-b displayed reasonable antiproliferative activity with IC50 values ranging from 3.8 to 5.4 μmol/L. Especially, compounds 5a and 7b exhibited an equipotency in both adriamycin (AMD)-susceptible and resistant MCF-7 breast carcinoma cells, indicating a different mechanism from AMD. The primary mechanism of action of 5a was to arrest the cell cycle at the G0/G1 phase, consistent with that of parent compound 1. Thus, we consider 12-chlorobenzyl sophoridinic derivatives with a tricyclic scaffold to be a new class of promising antitumor agents with an advantage of inhibiting drug-resistant cancer cells.

7.
Acta Pharmaceutica Sinica B ; (6): 307-312, 2014.
Article in English | WPRIM | ID: wpr-329720

ABSTRACT

Chronic hepatitis C virus (HCV) infection has become a major public health burden worldwide. Twenty-two sophocarpinic acid or matrine derivatives were synthesized and their anti-HCV activities were evaluated in vitro. The structure-activity analysis revealed that (i) sophocarpinic acids with a D-seco 3-ring structure scaffold were more favorable than matrines with a 4-ring scaffold; (ii) the introduction of an electron-withdrawing group on the phenyl ring in 12-N-benzenesulfonyl Δ (βγ) sophocarpinic acids was beneficial for the antiviral activity against HCV. Among them, compounds 9h and 9j exhibited the most potent inhibitory activities on HCV replication with selectivity indies of 70.3 and 30.9, respectively. Therefore, both were selected as antiviral candidates for further investigation.

8.
Acta Pharmaceutica Sinica ; (12): 1113-8, 2013.
Article in Chinese | WPRIM | ID: wpr-445573

ABSTRACT

LPS stimulation of macrophages production of IFN-beta plays a key role in innate immunity defending the microbial invasion. In this study, the effect of S632A3 promoting LPS-induced IFN-beta production and the underlying mechanism were investigated, mRNA level was measured by real-time PCR, cytokine production was determined by ELISA, GSK-3beta activity was investigated by kinase assay, protein phosphorylation and expression were evaluated by Western blotting. The results revealed that S632A3 significantly augmented IFN-beta production by LPS-stimulated macrophages. S632A3 inhibition of the activation of GSK-3beta, reduced the threonine 239 phosphorylation of transcription factor c-Jun but increased the total level of c-Jun in LPS-stimulated macrophages. Moreover, small interfering RNA-mediated knockdown of c-Jun level abrogated the ability of S632A3 to augment IFN-beta. The study thus demonstrates S632A3 being a new anti-inflammation lead compound and provides a molecular mechanism by which S632A3 promoted LPS-induced IFN-beta production in macrophages through inhibiting the activation of GSK-3beta.

9.
Acta Pharmaceutica Sinica ; (12): 1800-6, 2013.
Article in Chinese | WPRIM | ID: wpr-448790

ABSTRACT

A series of cycloberberine derivatives were designed, synthesized and evaluated for their anti-cancer activities in vitro. Among these analogs, compounds 6c, 6e and 6g showed strong inhibition on human HepG2 cells. They afforded a potent effect against DOX-resistant MCF-7 breast cells as well. The primary mechanism showed that cell cycle was blocked at G2/M phase of HepG2 cells treated with 6g using flow cytometry assay. It significantly inhibited the activity of DNA Top I at the concentration of 0.1 mg mL-1. Our results provided a basis for the development of this kind of compounds as novel anti-cancer agents.

10.
Acta Pharmaceutica Sinica ; (12): 200-5, 2012.
Article in Chinese | WPRIM | ID: wpr-414955

ABSTRACT

A series of novel N-(2-arylethyl) isoquinoline derivatives were designed, synthesized and evaluated for their anti-cancer activities. Among these analogs, compound 9a exhibited the potential anti-cancer activities on HepG2 and HCT116 cells with IC50 values of 2.52 and 1.99 microg x mL(-1), respectively. Cell cycle was blocked at S phase of HepG2 cells treated with 9a by flow cytometry detection. Our results provided a basis for the development of a new series of anti-cancer candidates.

11.
Acta Pharmaceutica Sinica ; (12): 1128-33, 2010.
Article in Chinese | WPRIM | ID: wpr-382295

ABSTRACT

Scavenger receptor CD36 could bind and endocytose oxLDL into macrophages which were then differentiated into foam cells that constitute the atherosclerotic lesion core, and was considered to be a potential target to treat atherosclerosis. In the establishment of the compound library of berberine (BBR, 1) analogues, we discovered that 13-hexylberberine (2) showed an antagonistic activity against CD36. Taking 2 as the lead compound, 21 derivatives were synthesized and their antagonistic activities were evaluated via an ELISA-like high-throughput screening (HTS) model. The primary structure-activity relationships were studied. It was indicated that the introduction of suitable groups at the 2- and 3-position of the aromatic ring A or at the 9-position of the aromatic ring D could enhance the activity. Among the 21 studied compounds, 7g bearing a benzyloxyl group at the 9-position provided a highest CD36 antagonistic activity with the IC50 value of 7.7 micromol L(-1). Besides, its antagonistic activity was further verified with Sf9 insect cell HTS model. So berberine analogues are a new family of CD36 receptor antagonists and worthy to be studied further.

12.
Acta Pharmaceutica Sinica ; (12): 462-6, 2010.
Article in Chinese | WPRIM | ID: wpr-382331

ABSTRACT

Ten pharmacophore models of beta-tubulin inhibitors were established from the training set of seventeen beta-tubulin inhibitors (two categories) with comformer analysis by using the Catalyst software. The optimal pharmacophore model with two hydrophobic units and two hydrogen bond acceptor units were confirmed (RMS = 0.43, Correl = 0.98, Weight = 2.06, Config = 15.97). This pharmacophore model is able to predict the activity of known beta-tubulin inhibitors and can be further used to identify structurally diverse compounds with higher activity.

13.
Acta Pharmaceutica Sinica ; (12): 724-9, 2010.
Article in Chinese | WPRIM | ID: wpr-382476

ABSTRACT

Liver cancer is one of the most common neoplastic diseases with high mortality in China. Currently, antimicrotubule drugs such as paclitaxel (PTX) and vincristine (VCR), are used as the common agents in the clinical chemotherapy for liver cancer. However, the responses of patients to these drugs vary markedly. Successful identification of intracellular factors influencing liver cancer's sensitivity to antimicrotubule drugs would be of great clinical importance. In this study, by engineering human hepatoma cell HepG2 to overexpress synuclein-gamma (SNCG), we investigated if SNCG is a molecular factor associated with the sensitivity to antimicrotubule drug treatment. Real-time RT-PCR and Western blotting assays showed SNCG was successfully overexpressed in HepG2/ SNCG cells compared with HepG2/Neo cells. The overexpressed SNCG altered the proliferation activity in HepG2 cells, which was 66% higher than that of HepG2/Neo cells through MTT method. The overexpressed SNCG also reduced sensitivity of HepG2 cells to antimicrotubule drugs: after PTX or VCR treatment, the proportion of HepG2/SNCG cells in G2/M arrest was significantly lower than that in HepG2/Neo cells. Correspondingly, HepG2/SNCG cells showed significantly lower mitotic index than HepG2/Neo cells. Meanwhile, HepG2/SNCG cells showed higher resistance to PTX and VCR than HepG2/Neo cells, with resistance index 21 and 15 respectively. Our studies suggested that the overexpression of SNCG could confer resistance to antimicrotubule drugs in hepatoma cells; and it indicated that SNCG may be as a potential response marker for antimicrotubule drugs in liver cancer chemotherapy.

SELECTION OF CITATIONS
SEARCH DETAIL