Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add filters








Language
Year range
1.
Mem. Inst. Oswaldo Cruz ; 115: e200313, 2020. tab, graf
Article in English | LILACS | ID: biblio-1154867

ABSTRACT

BACKGROUND Aedes aegypti is the sole vector of urban arboviruses in French Guiana. Overtime, the species has been responsible for the transmission of viruses during yellow fever, dengue, chikungunya and Zika outbreaks. Decades of vector control have produced resistant populations to deltamethrin, the sole molecule available to control adult mosquitoes in this French Territory. OBJECTIVES Our surveillance aimed to provide public health authorities with data on insecticide resistance in Ae. aegypti populations and other species of interest in French Guiana. Monitoring resistance to the insecticide used for vector control and to other molecule is a key component to develop an insecticide resistance management plan. METHODS In 2009, we started to monitor resistance phenotypes to deltamethrin and target-site mechanisms in Ae. aegypti populations across the territory using the WHO impregnated paper test and allelic discrimination assay. FINDINGS Eight years surveillance revealed well-installed resistance and the dramatic increase of alleles on the sodium voltage-gated gene, known to confer resistance to pyrethroids (PY). In addition, we observed that populations were resistant to malathion (organophosphorous, OP) and alpha-cypermethrin (PY). Some resistance was also detected to molecules from the carbamate family. Finally, those populations somehow recovered susceptibility against fenitrothion (OP). In addition, other species distributed in urban areas revealed to be also resistant to pyrethroids. CONCLUSION The resistance level can jeopardize the efficiency of chemical adult control in absence of other alternatives and conducts to strongly rely on larval control measures to reduce mosquito burden. Vector control strategies need to evolve to maintain or regain efficacy during epidemics.


Subject(s)
Animals , Pyrethrins/pharmacology , Insecticide Resistance/drug effects , Insecticide Resistance/genetics , Aedes/drug effects , Mosquito Vectors/drug effects , Insecticides/pharmacology , Mosquito Control/methods , Aedes/genetics , Spatio-Temporal Analysis , Mosquito Vectors/virology , French Guiana , Insect Vectors/drug effects , Insect Vectors/genetics
2.
Mem. Inst. Oswaldo Cruz ; 114: e190120, 2019. tab, graf
Article in English | LILACS | ID: biblio-1040624

ABSTRACT

BACKGROUND In recent years, South America has suffered the burden of continuous high impact outbreaks of dengue, chikungunya and Zika. Aedes aegypti is the main mosquito vector of these arboviruses and its control is the only solution to reduce transmission. OBJECTIVES In order to improve vector control it is essential to study mosquito population genetics in order to better estimate the population structures and the geneflow among them. METHODS We have analysed microsatellites and knockdown resistance (kdr) mutations from a trans-border region in Amazonia between the state of Amapá (Brazil) and French Guiana (overseas territory of France), to provide further knowledge on these issues. These two countries have followed distinct vector control policies since last century. For population genetic analyses we evaluated variability in 13 well-established microsatellites loci in Ae. aegypti from French Guiana (Saint Georges and Cayenne) and Brazil (Oiapoque and Macapá). The occurrence and frequency of kdr mutations in these same populations were accessed by TaqMan genotype assays for the sites 1016 (Val/Ile) and 1534 (Phe/Cys). FINDINGS We have detected high levels of gene flow between the closest cross-border samples of Saint-Georges and Oiapoque. These results suggest one common origin of re-colonisation for the populations of French Guiana and Oiapoque in Brazil, and a different source for Macapá, more similar to the other northern Brazilian populations. Genotyping of the kdr mutations revealed distinct patterns for Cayenne and Macapá associated with their different insecticide use history, and an admixture zone between these two patterns in Saint Georges and Oiapoque, in accordance with population genetic results. MAIN CONCLUSIONS The present study highlights the need for regional-local vector surveillance and transnational collaboration between neighboring countries to assess the impact of implemented vector control strategies, promote timely actions and develop preparedness plans.


Subject(s)
Animals , Insecticide Resistance/genetics , Aedes/drug effects , Aedes/genetics , Mosquito Vectors/drug effects , Mosquito Vectors/genetics , Mutation/genetics , Brazil , Insecticide Resistance/drug effects , Biodiversity , French Guiana , Genotype
3.
Mem. Inst. Oswaldo Cruz ; 113(5): e170398, 2018. graf
Article in English | LILACS | ID: biblio-894919

ABSTRACT

Since the 1940s, French Guiana has implemented vector control to contain or eliminate malaria, yellow fever, and, recently, dengue, chikungunya, and Zika. Over time, strategies have evolved depending on the location, efficacy of the methods, development of insecticide resistance, and advances in vector control techniques. This review summarises the history of vector control in French Guiana by reporting the records found in the private archives of the Institute Pasteur in French Guiana and those accessible in libraries worldwide. This publication highlights successes and failures in vector control and identifies the constraints and expectations for vector control in this French overseas territory in the Americas.


Subject(s)
Humans , Chikungunya Fever/transmission , Zika Virus Infection/therapy , Mosquito Vectors/classification
4.
Mem. Inst. Oswaldo Cruz ; 111(12): 750-756, Dec. 2016. tab, graf
Article in English | LILACS | ID: biblio-829256

ABSTRACT

Little is known about the Anopheles species of the coastal areas of French Guiana, or their spatiotemporal distribution or environmental determinants. The present study aimed to (1) document the distribution of Anopheles fauna in the coastal area around Cayenne, and (2) investigate the use of remotely sensed land cover data as proxies of Anopheles presence. To characterise the Anopheles fauna, we combined the findings of two entomological surveys that were conducted during the period 2007-2009 and in 2014 at 37 sites. Satellite imagery data were processed to extract land cover variables potentially related to Anopheles ecology. Based on these data, a methodology was formed to estimate a statistical predictive model of the spatial-seasonal variations in the presence of Anopheles in the Cayenne region. Two Anopheles species, known as main malaria vectors in South America, were identified, including the more dominant An. aquasalis near town and rural sites, and An. darlingi only found in inland sites. Furthermore, a cross-validated model of An. aquasalis presence that integrated marsh and forest surface area was extrapolated to generate predictive maps. The present study supports the use of satellite imagery by health authorities for the surveillance of malaria vectors and planning of control strategies.


Subject(s)
Animals , Anopheles/classification , Insect Vectors/classification , French Guiana , Malaria/transmission , Population Density , Satellite Imagery , Seasons , Spatio-Temporal Analysis
5.
Mem. Inst. Oswaldo Cruz ; 111(9): 561-569, Sept. 2016. tab, graf
Article in English | LILACS | ID: lil-794724

ABSTRACT

In French Guiana, malaria vector control and prevention relies on indoor residual spraying and distribution of long lasting insecticidal nets. These measures are based on solid epidemiological evidence but reveal a poor understanding of the vector. The current study investigated the behaviour of both vectors and humans in relation to the ongoing prevention strategies. In 2012 and 2013, Anopheles mosquitoes were sampled outdoors at different seasons and in various time slots. The collected mosquitoes were identified and screened for Plasmodium infection. Data on human behaviour and malaria episodes were obtained from an interview. A total of 3,135 Anopheles mosquitoes were collected, of which Anopheles darlingi was the predominant species (96.2%). For the December 2012-February 2013 period, the Plasmodium vivax infection rate for An. darlingi was 7.8%, and the entomological inoculation rate was 35.7 infective bites per person per three-month span. In spite of high bednet usage (95.7%) in 2012 and 2013, 52.2% and 37.0% of the participants, respectively, had at least one malaria episode. An. darlingi displayed heterogeneous biting behaviour that peaked between 20:30 and 22:30; however, 27.6% of the inhabitants were not yet protected by bednets by 21:30. The use of additional individual and collective protective measures is required to limit exposure to infective mosquito bites and reduce vector densities.


Subject(s)
Humans , Animals , Female , Anopheles/physiology , Insect Bites and Stings , Insect Vectors/physiology , Anopheles/classification , Anopheles/parasitology , Forests , French Guiana , Insect Vectors/classification , Insect Vectors/parasitology , Malaria, Falciparum/transmission , Malaria, Vivax/transmission , Population Density , Seasons , Species Specificity
6.
Mem. Inst. Oswaldo Cruz ; 109(5): 525-533, 19/08/2014. tab, graf
Article in English | LILACS | ID: lil-720421

ABSTRACT

In a climate of growing concern that Plasmodium falciparum may be developing a drug resistance to artemisinin derivatives in the Guiana Shield, this review details our current knowledge of malaria and control strategy in one part of the Shield, French Guiana. Local epidemiology, test-treat-track strategy, the state of parasite drug resistance and vector control measures are summarised. Current issues in terms of mobile populations and legislative limitations are also discussed.


Subject(s)
Animals , Humans , Antimalarials/administration & dosage , Malaria/epidemiology , Anopheles , Drug Resistance , French Guiana/epidemiology , Insect Vectors , Malaria/drug therapy , Malaria/transmission
7.
Mem. Inst. Oswaldo Cruz ; 107(3): 429-432, May 2012. mapas, tab
Article in English | LILACS | ID: lil-624028

ABSTRACT

Anopheles darlingi Root is the major vector of human malaria in the Neotropics and has been considered to be the sole malaria vector in French Guiana. The presence of other potential vectors suggests that malaria may be transmitted by other species under certain conditions. From 2006-2011, all anopheline specimens collected from 11 localities were assayed to determine if the Plasmodium circumsporozoite protein was present. In addition to An. darlingi, we found Anopheles oswaldoi, Anopheles intermedius and Anopheles nuneztovari specimens that were infected with Plasmodium sp. Further investigations on the behaviour and ecology of An. oswaldoi, An. intermedius and An. nuneztovari are necessary to determine their role in malaria transmission in French Guiana.


Subject(s)
Animals , Female , Humans , Anopheles/parasitology , Insect Vectors/parasitology , Plasmodium falciparum/chemistry , Plasmodium malariae/chemistry , Plasmodium vivax/chemistry , Protozoan Proteins/analysis , Anopheles/classification , Enzyme-Linked Immunosorbent Assay , French Guiana , Insect Vectors/classification , Malaria/transmission , Population Density , Plasmodium falciparum/isolation & purification , Plasmodium malariae/isolation & purification , Plasmodium vivax/isolation & purification , Seasons
8.
Mem. Inst. Oswaldo Cruz ; 106(3): 346-352, May 2011. ilus
Article in English | LILACS | ID: lil-589045

ABSTRACT

In French Guiana, pyrethroids and organophosphates have been used for many years against Aedes aegypti. We aimed to establish both the resistance level of Ae. aegypti and the ultra low volume spray efficacy to provide mosquito control services with practical information to implement vector control and resistance management. Resistance to deltamethrin and fenitrothion was observed. In addition, the profound loss of efficacy of AquaK'othrine® and the moderate loss of efficacy of Paluthion® 500 were recorded. Fenitrothion remained the most effective candidate for spatial application in French Guiana until its removal in December 2010. Further investigation of the mechanism of resistance to deltamethrin demonstrated the involvement of mixed-function oxidases and, to a lesser extent, of carboxylesterases. However, these observations alone cannot explain the level of insecticide resistance we observed during tube and cage tests.


Subject(s)
Animals , Female , Aedes , Insecticide Resistance , Insecticides , Mosquito Control , Organophosphates , Pyrethrins , Aedes/enzymology , Dengue , French Guiana
SELECTION OF CITATIONS
SEARCH DETAIL