ABSTRACT
The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling exert essential regulatory function in microbial-and onco-immunology through the induction of cytokines, primarily type I interferons. Recently, the aberrant and deranged signaling of the cGAS-STING axis is closely implicated in multiple sterile inflammatory diseases, including heart failure, myocardial infarction, cardiac hypertrophy, nonalcoholic fatty liver diseases, aortic aneurysm and dissection, obesity, etc. This is because of the massive loads of damage-associated molecular patterns (mitochondrial DNA, DNA in extracellular vesicles) liberated from recurrent injury to metabolic cellular organelles and tissues, which are sensed by the pathway. Also, the cGAS-STING pathway crosstalk with essential intracellular homeostasis processes like apoptosis, autophagy, and regulate cellular metabolism. Targeting derailed STING signaling has become necessary for chronic inflammatory diseases. Meanwhile, excessive type I interferons signaling impact on cardiovascular and metabolic health remain entirely elusive. In this review, we summarize the intimate connection between the cGAS-STING pathway and cardiovascular and metabolic disorders. We also discuss some potential small molecule inhibitors for the pathway. This review provides insight to stimulate interest in and support future research into understanding this signaling axis in cardiovascular and metabolic tissues and diseases.
ABSTRACT
After the status quo of ESI-covered pharmacology, toxicology and clinical medicine in domestic universities of traditional Chinese medicine was described, the papers and highly-cited papers published by these universities, total citations, citations of each paper were ranked and compared.The related problems and development tendency of different subjects were analyzed with suggestions put forward for the construction of first class subjects in domestic colleges and universities of traditional Chinese medicine.
ABSTRACT
To study the chemical constituents of Dipsacus asper, chromatographic methods such as D101 macroporous resin, silica gel, octadecylsilyl (ODS) column chromatographic techniques and preparative HPLC were used, and five compounds were isolated from 70% (v/v) ethanol extract of the plant. By using spectroscopic techniques including 1H NMR, 13C NMR, 1H-1H COSY, HSQC, HMBC and TOF-MS, the compounds were identified as 3beta-hydroxy-24-nor-urs-4 (23), 12-dien-28-oic acid (1), ursolic acid (2), oleanolic acid (3), 3-O-alpha-L-rhamnosyl(1 --> 3)-beta-D-glucopyranosyl (1 --> 3)-alpha-L-rhamnosyl (1 --> 2)-alpha-L-arabinopyranosyl hederagenin 28-O-beta-D-glucopyranosyl (1 --> 6)-beta-D-glucopyranosyl ester (4), 3-O-[beta-D-xylopyranosyl (1 --> 4)-beta-D-glucopyranosyl (1 --> 4)] [alpha-L-rhamnosyl(1 --> 3)]-beta-D-glucopyranosyl (1 --> 3)-alpha-L-rhamnosyl(1 --> 2)-alpha-L-arabinopyranosyl hederagenin (5), separately. Among them, 1 is a new compound, and 2 is isolated from this plant for the first time.
ABSTRACT
Objective To establish a RP-HPLC method investigate the processing technique and mechanism of Eucommiae Cortex.Methods The RP-HPLC method was applied to simultaneously determining six ingredients,geniposidic acid,geniposide,genipin,chlorogenic acid,(+)-pinoresinol-di-β-D-glucopyranoside,and(+)-syringaresinol-di-β-D-glucopyranoside,in the different processed barks of Eucommia ulmoides.Results The valid method with good accuracy could be well used to study the processing technique of E.ulmoides;Besides,target ingredients in E.ulmoide were decreased within 6 h when they were processed.Conclusion Established RP-HPLC is a reliable method which could be used to research the processing technique of the barks ofE.ulmoides.Moreover,the result of this study could be provided with significant evidence of processed barks of E.ulmoides.