ABSTRACT
Objective To establish the UPLC fingerprint chromatogram combined with chemometric analysis for the quality evaluation of classical formula Linggui Zhugan Decoction.Methods SHIMADZU Shim-Pack GIST C18 column(100 mm×2.1 mm,2.0 μm)was used with acetonitrile-0.1%phosphoric acid aqueous solution as mobile phase,gradient elution;flow rate was 0.2 mL/min;the detection wavelength was 266 nm for the first 30 minutes and 235 nm for the last 36 minutes;the column temperature was 30℃.The UPLC fingerprint of Linggui Zhugan Decoction was established by Similarity Evaluation System for Chromatographic Fingerprint of TCM(2012.130723 version),and the common peak was determined and the similarity evaluation was carried out.Based on the peak area determination results of the common peak of the fingerprint,the quality of different batches of Linggui Zhugan Decoction was evaluated by chemometrics such as clustering analysis and principal component analysis.Results A total of 24 common peaks were confirmed and 14 components were identified by using reference substances.The similarity of 10 batches of Linggui Zhugan Decoction samples was greater than 0.950,which could be divided into two categories by chemometrics,and the principal component 1-4 were the main factors affecting its quality evaluation.OPLS-DA identified 6 differential markers.Conclusion The fingerprint research method established in the study is simple,reliable and reproducible.Through the method of fingerprint combined with chemometrics analysis,the differences between Linggui Zhugan Decoction from different origins of medicinal materials are identified,which provides a reference for the internal quality evaluation of Linggui Zhugan Decoction.
ABSTRACT
Background Studies on the association between greenness exposure and allergic rhinitis (AR) in children are mostly conducted in developed countries, and the conclusion is not consistent. Objective Using street view data to explore the association between greenness exposure and allergic rhinitis (AR) prevalence in Chinese children. Methods A cross-sectional study was conducted among 40868 children aged 2-17 years in three cities of Northeast China from 2012 to 2013, which consisted of 20886 (51.1%) boys and 19982 (48.9%) girls. The information of AR prevalence was obtained through questionnaire. Based on downloaded street view images from Tencent Maps, a green view index (GVI) of green vegetation (trees and grass) within 800 m and 1000 m buffer of the participants' schools was calculated by using artificial intelligence, and it was used as a surrogate of the greenness exposure. A mixed-effect logistic regression model was used to estimate the odds ratio (OR) of AR prevalence in children for per increase of inter-quartile range (IQR) of GVI. In addition, according to ambient PM2.5 concentration, the participants were divided into a low PM2.5 exposure group (≤56.23 μg·m−3) and a high exposure group (>56.23 μg·m−3) to investigate whether PM2.5 was a modifier on the association between GVI and AR. Results The average age of the subjects was (10.40±3.68) years and 3 963 (9.7%) subjects reported diagnosed AR. Within 800 m buffer, an IQR increase in GVI for trees (IQR=0.031, OR=0.85, 95%CI: 0.81-0.90) and overall greenness (IQR=0.029, OR=0.86, 95%CI: 0.81-0.90) was associated with lower adjusted odds ratio of AR. The interaction between PM2.5 and GVI was statistically significant (P< 0.1), that is, the negative associations of trees and overall greenness with AR were observed only at low PM2.5 exposure levels. The sensitivity analysis results of GVI within 1000 m buffer was consistent with that within 800 m buffer. Conclusion Exposure to green vegetation, especially trees, may be associated with decreased risks of AR in children, and such associations may be more obvious in areas with a low PM2.5 concentration.