ABSTRACT
Objective: To explore the safety and short-term efficacy of venetoclax combined with azacitidine (Ven+AZA) in previously untreated patients unfit for standard chemotherapy and patients with relapsed/refractory (R/R) acute myeloid leukemia (AML) in China. Methods: A retrospective study was conducted in 60 previously untreated patients unfit for standard chemotherapy and patients with R/R AML who received Ven+ AZA (venetoclax, 100 mg D1, 200 mg D2, 400 mg D3-28; azacitidine, 75 mg/m(2) D1- 7) at the Peking University Institute of Hematology from June 1, 2019 to May 31, 2021. The incidence of adverse events, complete remission (CR) /CR with incomplete hematological recovery (CRi) rate, objective remission rate (ORR) , and minimal residual disease (MRD) status in patients with different risk stratification and gene subtypes were analyzed. Results: The median age of the patients was 54 (18-77) years, 33 (55.0%) were males, and the median follow-up time was 4.8 (1.4-26.3) months. Among the 60 patients, 24 (40.0%) were previously untreated patients unfit for standard chemotherapy, and 36 (60.0%) were R/R patients. The median mumber cycles of Ven+AZA in the two groups were both 1 (1-5) . According to the prognostic risk stratification of the National Comprehensive Cancer Network, it was divided into 8 cases of favorable-risk, 2 cases of intermediate risk, and 14 cases of poor-risk. In previously untreated patients unfit for standard chemotherapy, after the first cycle of Ven+AZA, 17/24 (70.8%) cases achieved CR/CRi, 3/24 (12.5%) achieved partial remission (PR) , and the ORR was 83.3%. Among them, nine patients received a second cycle chemotherapy and two received a third cycle. Among CR/CRi patients, 8/17 (47.1%) achieved MRD negativity after two cycles of therapy. In the R/R group, after the first cycle of Ven+AZA, 21/36 (58.3%) cases achieved CR/CRi (7/21 achieved MRD negativity) , 3 achieved PR, and the ORR was 66.7%. Among R/R patients, 12 were treated for more than two cycles. There were no new CR/CRi patients after the second treatment cycle, and 14 cases (66.7%) achieved MRD negativity. According to the time from CR to hematological recurrence, the R/R group was divided into 12 cases in the favorable-risk group (CR to hematological recurrence ≥18 months) and 24 in the poor-risk group (CR to hematological recurrence<18 months, no remission after one cycle of therapy, and no remission after two or more cycles of therapy) . Eleven of 24 (45.8%) cases achieved CR/CRi after one cycle of Ven+AZA in the poor-risk R/R group, and 10 of 12 (83.3%) achieved CR/CRi in the favorable-risk R/R group, which was significantly superior to the poor-risk group (P=0.031) . After one cycle of treatment, 13 patients with IDH1/2 mutations and 4 that were TP53-positive all achieved CR/CRi. The CR/CRi rate of 18 patients with NPM1 mutations was 77.8%. Five patients with RUNX1-RUNX1T1 combined with KIT D816 mutation (two initial diagnoses and three recurrences) had no remission. Ven+ AZA was tolerable for AML patients. Conclusion: Ven+AZA has acceptable safety in previously untreated patients unfit for standard chemotherapy, patients with R/R AML can achieve a high response rate, and some patients can achieve MRD negativity. It is also effective in NPM1-, IDH1/IDH2-, and TP53-positive patients. The long-term efficacy remains to be observed.
Subject(s)
Aged , Humans , Male , Middle Aged , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Azacitidine/therapeutic use , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Leukemia, Myeloid, Acute/genetics , Retrospective Studies , SulfonamidesABSTRACT
Objective: To explore the differences in the biological effects of different expansion systems on natural killer (NK) cells, as well as the safety and preliminary clinical efficacy in the treatment of patients with recurrence after allogeneic hematopoietic stem cell transplantation (allo-HSCT) . Methods: Peripheral blood cells from healthy donors were stimulated with either CD3 combined with CD52 or K562 feeder cells loaded with IL-21/4-1BB to induce NK cell expansion. Changes in the NK cell phenotype, cytokine secretion, and cytotoxicity before and after expansion were detected. We also evaluated the safety and clinical efficacy of two different expansion strategies for patients received NK infusion. Results: Compared with the CD3/CD52 monoclonal antibody amplification system, the feeder cell expansion group had a higher purity of NK cells and higher expression ratios of NK cell surface activation receptors such as DNAM-1 and NKp30, while inhibitory receptor CTLA-4 expression was low and NKG2D/CD25/CD69/ Trail/PD-1/TIM-3/TIGIT had no statistically significant differences between the groups. Further functional results showed that the expression level of KI67 in NK cells after expansion in the two groups increased significantly, especially in the feeder cell expansion group. Simultaneously, the perforin and granzyme B levels of NK cells in the feeder cell expansion group were significantly higher than in the CD3/CD52 expansion group. A retrospective analysis of eight patients who received monoclonal antibody-expanded NK cell reinfusion and nine patients with trophoblast cell-expanded NK cell reinfusion was done. The disease characteristics of the two groups were comparable, NK cell reinfusion was safe, and there were no obvious adverse reactions. Clinical prognostic results showed that in the CD3/CD52 monoclonal antibody amplification group, the MRD conversion rate was 50% (2/4) , and the feeder cell expansion group was 50% (3/6) . After 5 years of follow-up from allo-HSCT, three patients in the monoclonal antibody expansion group had long-term survival without leukemia, and the remaining five patients had died; two patients died in the feeder cell expansion group, and the other six patients had long-term survival. Six cases had GVHD before NK cell reinfusion, and GVHD did not aggravate or even relieved after NK cell reinfusion. Conclusions: Preliminary results show that the biological characteristics of NK cells with diverse expansion strategies are significantly different, which may affect the clinical prognosis of patients with recurrence or persistent minimal residual disease after HSCT. The two groups of patients treated with NK cells from different expansion strategies had no obvious adverse reactions after NK cell infusion, but efficacy still needs to be further confirmed.
Subject(s)
Humans , Antibodies, Monoclonal/pharmacology , Graft vs Host Disease/metabolism , Hematopoietic Stem Cell Transplantation , Killer Cells, Natural , Retrospective Studies , Treatment OutcomeABSTRACT
BACKGROUND@#For patients with B cell acute lymphocytic leukemia (B-ALL) who underwent allogeneic stem cell transplantation (allo-SCT), many variables have been demonstrated to be associated with leukemia relapse. In this study, we attempted to establish a risk score system to predict transplant outcomes more precisely in patients with B-ALL after allo-SCT.@*METHODS@#A total of 477 patients with B-ALL who underwent allo-SCT at Peking University People's Hospital from December 2010 to December 2015 were enrolled in this retrospective study. We aimed to evaluate the factors associated with transplant outcomes after allo-SCT, and establish a risk score to identify patients with different probabilities of relapse. The univariate and multivariate analyses were performed with the Cox proportional hazards model with time-dependent variables.@*RESULTS@#All patients achieved neutrophil engraftment, and 95.4% of patients achieved platelet engraftment. The 5-year cumulative incidence of relapse (CIR), overall survival (OS), leukemia-free survival (LFS), and non-relapse mortality were 20.7%, 70.4%, 65.6%, and 13.9%, respectively. Multivariate analysis showed that patients with positive post-transplantation minimal residual disease (MRD), transplanted beyond the first complete remission (≥CR2), and without chronic graft-versus-host disease (cGVHD) had higher CIR (P < 0.001, P = 0.004, and P < 0.001, respectively) and worse LFS (P < 0.001, P = 0.017, and P < 0.001, respectively), and OS (P < 0.001, P = 0.009, and P < 0.001, respectively) than patients without MRD after transplantation, transplanted in CR1, and with cGVHD. A risk score for predicting relapse was formulated with the three above variables. The 5-year relapse rates were 6.3%, 16.6%, 55.9%, and 81.8% for patients with scores of 0, 1, 2, and 3 (P < 0.001), respectively, while the 5-year LFS and OS values decreased with increasing risk score.@*CONCLUSION@#This new risk score system might stratify patients with different risks of relapse, which could guide treatment.
Subject(s)
Humans , B-Lymphocytes , Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Recurrence , Retrospective Studies , Risk Factors , Stem Cell TransplantationABSTRACT
Background@#Several studies have shown that detection of minimal residual disease (MRD) in acute myeloid leukemia (AML) is an independent prognostic factor. This study aimed to evaluate the significance of dynamic MRD pretransplantation on outcome of AML patients receiving allogeneic hematopoietic stem cell transplantation (allo-HSCT).@*Methods@#We retrospectively analyzed 145 consecutive AML patients undergoing allo-HSCT in complete remission status between June 2013 and June 2016. MRD was determined with multiparameter flow cytometry after the first and second courses of chemotherapy and pre-HSCT.@*Results@#In matched sibling donor transplantation (MSDT) settings, patients with positive MRD had higher cumulative incidence of relapse (CIR) than those without MRD after the first (32.3 ± 9.7% vs. 7.7 ± 3.1%, χ = 3.661, P = 0.055) or second course of chemotherapy (57.1 ± 3.6% vs. 12.5 ± 2.7%, χ = 8.759, P = 0.003) or pre-HSCT (50.0 ± 9.7% vs. 23.0 ± 3.2%, χ = 5.547, P = 0.019). In haploidentical SCT (haplo-SCT) settings, the MRD status at those timepoints had no significant impact on clinical outcomes. However, patients with persistent positive MRD from chemotherapy to pre-HSCT had higher CIR than those without persistent positive MRD both in MSDT and haplo-SCT settings. Patients with persistent positive MRD underwent MSDT had the highest relapse incidence, followed by those with persistent positive MRD underwent haplo-SCT, those without persistent MRD underwent haplo-SCT, and those without persistent MRD underwent MSDT (66.7 ± 9.2% vs. 38.5 ± 6.0% vs. 18.8 ± 8.7% vs. 12.0 ± 1.0%, χ = 20.763, P < 0.001). Multivariate analysis showed that persistent positive MRD before transplantation was associated with higher CIR (hazard ratio [HR] = 1.69, 95% confidence interval [CI]: 1.200-2.382, P = 0.003), worse leukemia-free survival (HR = 1.812, 95% CI: 1.168-2.812, P = 0.008), and overall survival (HR = 2.354, 95% CI: 1.528-3.627, P < 0.001).@*Conclusion@#Our results suggest that persistent positive MRD before transplantation, rather than positive MRD at single timepoint, could predict poor outcome both in MSDT and haplo-SCT settings.