Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Year range
1.
Protein & Cell ; (12): 723-739, 2020.
Article in English | WPRIM | ID: wpr-828747

ABSTRACT

Emerging and re-emerging RNA viruses occasionally cause epidemics and pandemics worldwide, such as the on-going outbreak of the novel coronavirus SARS-CoV-2. Herein, we identified two potent inhibitors of human DHODH, S312 and S416, with favorable drug-likeness and pharmacokinetic profiles, which all showed broad-spectrum antiviral effects against various RNA viruses, including influenza A virus, Zika virus, Ebola virus, and particularly against SARS-CoV-2. Notably, S416 is reported to be the most potent inhibitor so far with an EC of 17 nmol/L and an SI value of 10,505.88 in infected cells. Our results are the first to validate that DHODH is an attractive host target through high antiviral efficacy in vivo and low virus replication in DHODH knock-out cells. This work demonstrates that both S312/S416 and old drugs (Leflunomide/Teriflunomide) with dual actions of antiviral and immuno-regulation may have clinical potentials to cure SARS-CoV-2 or other RNA viruses circulating worldwide, no matter such viruses are mutated or not.


Subject(s)
Animals , Antiviral Agents , Pharmacology , Therapeutic Uses , Betacoronavirus , Physiology , Binding Sites , Cell Line , Coronavirus Infections , Drug Therapy , Virology , Crotonates , Pharmacology , Cytokine Release Syndrome , Drug Therapy , Drug Evaluation, Preclinical , Gene Knockout Techniques , Humans , Influenza A virus , Leflunomide , Pharmacology , Mice , Mice, Inbred BALB C , Orthomyxoviridae Infections , Drug Therapy , Oseltamivir , Therapeutic Uses , Oxidoreductases , Metabolism , Pandemics , Pneumonia, Viral , Drug Therapy , Virology , Protein Binding , Pyrimidines , RNA Viruses , Physiology , Structure-Activity Relationship , Toluidines , Pharmacology , Ubiquinone , Metabolism , Virus Replication
2.
Protein & Cell ; (12): 723-739, 2020.
Article in English | WPRIM | ID: wpr-828583

ABSTRACT

Emerging and re-emerging RNA viruses occasionally cause epidemics and pandemics worldwide, such as the on-going outbreak of the novel coronavirus SARS-CoV-2. Herein, we identified two potent inhibitors of human DHODH, S312 and S416, with favorable drug-likeness and pharmacokinetic profiles, which all showed broad-spectrum antiviral effects against various RNA viruses, including influenza A virus, Zika virus, Ebola virus, and particularly against SARS-CoV-2. Notably, S416 is reported to be the most potent inhibitor so far with an EC of 17 nmol/L and an SI value of 10,505.88 in infected cells. Our results are the first to validate that DHODH is an attractive host target through high antiviral efficacy in vivo and low virus replication in DHODH knock-out cells. This work demonstrates that both S312/S416 and old drugs (Leflunomide/Teriflunomide) with dual actions of antiviral and immuno-regulation may have clinical potentials to cure SARS-CoV-2 or other RNA viruses circulating worldwide, no matter such viruses are mutated or not.


Subject(s)
Animals , Antiviral Agents , Pharmacology , Therapeutic Uses , Betacoronavirus , Physiology , Binding Sites , Cell Line , Coronavirus Infections , Drug Therapy , Virology , Crotonates , Pharmacology , Cytokine Release Syndrome , Drug Therapy , Drug Evaluation, Preclinical , Gene Knockout Techniques , Humans , Influenza A virus , Leflunomide , Pharmacology , Mice , Mice, Inbred BALB C , Orthomyxoviridae Infections , Drug Therapy , Oseltamivir , Therapeutic Uses , Oxidoreductases , Metabolism , Pandemics , Pneumonia, Viral , Drug Therapy , Virology , Protein Binding , Pyrimidines , RNA Viruses , Physiology , Structure-Activity Relationship , Toluidines , Pharmacology , Ubiquinone , Metabolism , Virus Replication
3.
Protein & Cell ; (12): 723-739, 2020.
Article in English | WPRIM | ID: wpr-827018

ABSTRACT

Emerging and re-emerging RNA viruses occasionally cause epidemics and pandemics worldwide, such as the on-going outbreak of the novel coronavirus SARS-CoV-2. Herein, we identified two potent inhibitors of human DHODH, S312 and S416, with favorable drug-likeness and pharmacokinetic profiles, which all showed broad-spectrum antiviral effects against various RNA viruses, including influenza A virus, Zika virus, Ebola virus, and particularly against SARS-CoV-2. Notably, S416 is reported to be the most potent inhibitor so far with an EC of 17 nmol/L and an SI value of 10,505.88 in infected cells. Our results are the first to validate that DHODH is an attractive host target through high antiviral efficacy in vivo and low virus replication in DHODH knock-out cells. This work demonstrates that both S312/S416 and old drugs (Leflunomide/Teriflunomide) with dual actions of antiviral and immuno-regulation may have clinical potentials to cure SARS-CoV-2 or other RNA viruses circulating worldwide, no matter such viruses are mutated or not.


Subject(s)
Animals , Antiviral Agents , Pharmacology , Therapeutic Uses , Betacoronavirus , Physiology , Binding Sites , Cell Line , Coronavirus Infections , Drug Therapy , Virology , Crotonates , Pharmacology , Cytokine Release Syndrome , Drug Therapy , Drug Evaluation, Preclinical , Gene Knockout Techniques , Humans , Influenza A virus , Leflunomide , Pharmacology , Mice , Mice, Inbred BALB C , Orthomyxoviridae Infections , Drug Therapy , Oseltamivir , Therapeutic Uses , Oxidoreductases , Metabolism , Pandemics , Pneumonia, Viral , Drug Therapy , Virology , Protein Binding , Pyrimidines , RNA Viruses , Physiology , Structure-Activity Relationship , Toluidines , Pharmacology , Ubiquinone , Metabolism , Virus Replication
4.
Virologica Sinica ; (6): 181-189, 2011.
Article in Chinese | WPRIM | ID: wpr-423769

ABSTRACT

Torque teno virus(TTV)is a nonenveloped virus containing a single-stranded,circular DNA genome of approximately 3.8kb.We completely synthesized the 3808 nucleotides of the TTV(SANBAN isolate)genome,which contains a hairpin structure and a GC-rich region.More than 100 overlapping oligonucleotides were chemically synthesized and assembled by polymerise chain assembly reaction(PCA),and the synthesis was completed with splicing by overlap extension(SOEing).This study establishes the methodological basis of the chemical synthesis of a viral genome for use as a live attenuated vaccine or gene therapy vector.

SELECTION OF CITATIONS
SEARCH DETAIL