ABSTRACT
ABSTRACT Objective To describe the technical specificities and feasibility of simulation of minimally invasive spine surgery in live pigs, as well as similarities and differences in comparison to surgery in humans. Methods A total of 22 Large White class swine models, weighing between 60 and 80kg, were submitted to surgical simulations, performed during theoretical-practical courses for training surgical techniques (microsurgical and endoscopic lumbar decompression; percutaneous pedicular instrumentation; lateral access to the thoracic spine, and anterior and retroperitoneal to the lumbar spine, and management of complications) by 86 spine surgeons. For each surgical technique, porcine anatomy (similarities and differences in relation to human anatomy), access route, and dimensions of the instruments and implants used were evaluated. Thus, the authors describe the feasibility of each operative simulation, as well as suggestions to optimize training. Study results are descriptive, with figures and drawings. Results Neural decompression surgeries (microsurgeries and endoscopic) and pedicular instrumentation presented higher similarities to surgery on humans. On the other hand, intradiscal procedures had limitations due to the narrow disc space in swines. We were able to simulate situations of surgical trauma in surgical complication scenarios, such as cerebrospinal fluid fistulas and excessive bleeding, with comparable realism to surgery on humans. Conclusion A porcine model for simulation of minimally invasive spinal surgical techniques had similarities with surgery on humans, and is therefore feasible for surgeon training.
Subject(s)
Animals , Spinal Fusion/methods , Intervertebral Disc Degeneration , Swine , Treatment Outcome , Minimally Invasive Surgical Procedures/methods , Lumbar Vertebrae , Lumbosacral RegionSubject(s)
Animals , Female , Bone Marrow Cells/cytology , Bone Marrow Transplantation/methods , Cell Movement/physiology , Myocardial Infarction/surgery , Myocardium/cytology , Pericardium/cytology , Disease Models, Animal , Myocardial Infarction/chemically induced , Pericardium/drug effects , Random Allocation , Sus scrofa , Transplantation, AutologousABSTRACT
Introdução: A medicina regenerativa tem ganho grande importância nos últimos anos em decorrência da possibilidade de certas células se diferenciarem em linhagens celulares distintas e, assim, reconstruírem o tecido lesado. As células-tronco têm despontado como forma alternativa de tratamento para doenças pela sua capacidade de diferenciação nos mais de 100 tipos de tecido. A medula óssea contém células-tronco adultas, hematopoéticas e mesenquimais, que auxiliam na limitação do remodelamento cardíaco. Método: Foram utilizados 9 cães com peso entre 25 kg e 30 kg, divididos em três grupos: intracoronária, intramiocárdica-transendocárdica e retrógrada venosa. Células mononucleares da medula óssea foram coletadas por densidade Ficoll, marcadas com fluorocromo Hoechst e infundidas nas diferentes vias citadas anteriormente...
Background: Regenerative medicine has become increasingly important in recent years due to the possibility of certain cells to differentiate into different cell lines and thus recover the damaged tissue. The stem cell has emerged as an alternative treatment for diseases as a result of their ability to differentiate in more than 100 types of tissue. Bone marrow contains adult stem cells, hematopoietic and mesenchymal cells, which limit heart remodeling. Methods: Nine dogs weighing between 25 and 30 kg were divided into three groups: intracoronary group, intramyocardial-transendocardial group and retrograde venous group. Mononuclear cells were collected from bone marrow by Ficoll density, stained with Hoechst fluorocrom and infused through the different routes mentioned above...