Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Add filters

Year range
Acta Pharmaceutica Sinica ; (12): 310-5, 2014.
Article in Chinese | WPRIM | ID: wpr-448760


In order to enhance the antitumor efficacy of recombinant Newcastle disease virus, rNDV-IL15 was rescued in this study. Recombinant plasmid prNDV-IL15 was constructed, and BHK21 cells were transfected with the recombinant plasmid. Finally, the recombinant Newcastle disease virus rNDV-IL15 was successfully rescued. The growth curves of these two recombinant viruses were determined. Murine melanoma B16F10 cells were infected with rNDV-IL15 at MOI of 0.1, and the expression level of IL15 in the supernatant was detected by ELISA. The antitumor efficacy of rNDV-IL15 and rNDV was compared in vitro and in vivo. Results showed that prNDV-IL15 was constructed and recombinant virus rNDV-IL15 was successfully rescued. The growth curve of rNDV-IL15 showed that the growth of rNDV-IL15 had not been changed after insertion of IL15 gene. Results showed that there was high level of IL15 expression in the supernatant of rNDV-IL5-infected B16F10 cells (1 044.3 +/- 27.7 ng x mL(-1)). rNDV-IL15 and rNDV significantly inhibited the growth of B16F10 cells in vitro in a time-dependent manner. However, there was no significant difference between them. In animal experiments, rNDV-IL15 efficiently suppressed tumor growth in vivo when compared with rNDV, and the difference was statistically significant. The results suggested that rNDV-IL15 is a more effective antitumor agent.

Acta Pharmaceutica Sinica ; (12): 1000-6, 2014.
Article in Chinese | WPRIM | ID: wpr-448683


This study aims to investigate the effects of fibroblast growth factor 21 (FGF-21) on learning and memory abilities and antioxidant capacity of D-galactose-induced aging mice. Kunming mice (37.1 +/- 0.62) g were randomly divided into normal control group, model group and FGF-21 high, medium and low dose groups (n = 8). Each group was injected in cervical part subcutaneously with D-galactose 180 mg x kg(-1) x d(-1) once a day for 8 weeks. At the same time, FGF-21-treated mice were administered with FGF-21 by giving subcutaneous injection in cervical part at the daily doses of 5, 2 and 1 mg x kg(-1) x d(-1). The normal control group was given with normal saline by subcutaneous injection in cervical part. At seventh week of the experiment, the learning and memory abilities of mice were determined by water maze and jumping stand tests. At the end of the experiment, the mice were sacrificed and the cells damage of hippocampus was observed by HE staining in each group. Reactive oxygen species (ROS), malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT) and total antioxidant capacity (T-AOC) in the brain of mice were determined. The results showed that different doses of FGF-21 could reduce the time reaching the end (P < 0.01 or P < 0.05) and the number of touching blind side (P < 0.01 or P < 0.05) in the water maze comparing with the model group. It could also prolong the latency time (P < 0.05) and decrease the number of errors (P < 0.01 or P < 0.05) in the step down test. The result of HE staining showed that FGF-21 could significantly reduce brain cell damage in the hippocampus. The ROS and MDA levels of three different doses FGF-21 treatment group reduced significantly than that of the model group [(5.58 +/- 1.07), (7.78 +/- 1.92), (9.03 +/- 1.77) vs (12.75 +/- 2.02) pmol (DCF) x min(-1) x mg(-1), P < 0.01 or P < 0.05], [(2.92 +/- 0.71), (4.21 +/- 0.81), (4.41 +/- 0.97) vs (5.62 +/- 0.63) nmol x mg(-1) (protein), P < 0.01]. Comparing with the model group, the activities of SOD, GPx, CAT and T-AOC of the three different doses FGF-21 treatment groups were also improved in a dose-dependent manner. This study demonstrates that FGF-21 can ameliorate learning and memory abilities of D-galactose induced aging mice, improve the antioxidant abilities in brain tissue and delay brain aging. This finding provides a theoretical support for clinical application of FGF-21 as a novel therapeutics for preventing aging.

Acta Pharmaceutica Sinica ; (12): 985-92, 2014.
Article in Chinese | WPRIM | ID: wpr-448681


To investigate the cell-killing effect and its possible mechanism of rClone30-hDR5 in combination with TRAIL on human hepatic carcinoma (HCC) cell line, first of all, recombinant plasmid pee12.4-hDR5 was introduced into HepG2 cells by liposome transfection. After five rounds of screening by flow cytometry, HepG2 cells expressing high levels of DR5 on cell surface were isolated. The cytotoxicity of TRAIL to selected cells was higher than that of TRAIL to HepG2 cells by MTT method (P < 0.01). The result suggested that the cloned hDR5 gene had biological activity. MTT assay showed that, rClone30- hDR5 in combination with TRAIL more efficiently inhibited the tumor growth of HepG2 cells compared to rClone30-hDR5 or TRAIL in vitro. The results of Annexin V-FITC/PI staining and Quantitative Real-time PCR indicated that rClone30-hDR5 in combination with TRAIL significantly increased the mRNA levels of caspase 3 and caspase 8, and induced the apoptosis of tumor cells. HepG2 cells were infected with rClone30-hDR5 or rClone30 at MOI of 1. The expression of hDR5 on tumor surface increased significantly by rClone30-hDR5 compared to that by rClone30, which contributed to the sensitivity to TRAIL. In conclusion, rClone30-hDR5 in combination with TRAIL has potential application value in cancer treatment.

Acta Pharmaceutica Sinica ; (12): 261-8, 2013.
Article in Chinese | WPRIM | ID: wpr-445529


5-Flucytosine (5-FC) could be changed to 5-fluorouracil (5-FU) by cytosine deaminase (CD), the latter is able to kill cancer cells. However, there is no efficient method to deliver the CD gene into the tumor cells, which hampers the application of the suicide gene system. In this experiment, for the first time, the NDV has been utilized as a vector to deliver the CD gene into the cancer cells, the virus can infect the cancer cells specifically, replicate and assemble, while the cytosine deaminase is expressed. Then the CD converts the prodrug 5-FC into 5-FU to achieve the purpose of inhibiting tumor. Firstly, the whole genome of E. coli JM109 was extracted, and the CD gene was obtained by cloning method. Then the CD and IRES-EGFP were ligated into the pEE12.4 expression vector to become a recombinant pEE12.4IE-CD eukaryotic expression plasmid. The human liver cancer cells were transfected with the plasmid. The cells were treated with different concentrations of 5-FC, MTT method was used to determine the killing effect of CD/5-FC system on the human liver cancer cells. The cell deaths were 18.07%, 42.98% and 62.20% respectively when the concentrations of prodrug were at 10, 20 and 30 mmol x L(-1). In 5-FC acute toxicity experiment, Kunming mice were injected with different concentrations of 5-FC at intervals of 1:0.5. The LD50 of 5-FC through iv injection was determined by improved Karber's method, the LD50 was 507 mg x kg(-1) and the 95% confidence limit was 374-695 mg x kg(-1). According to the maximum LD0 dose of the LD50, the maximum safe dose was 200 mg x kg(-1). Body weight and clinic symptoms of the experimental animals were observed. These results laid the foundation to verify the antitumor effect and safety of CD/5-FC system in animal models. The CD gene was ligated into the NDV (rClone30) carrier, then the tumor-bearing animal was established to perform the tumor inhibiting experiment. The result showed that the recombinant rClone30-CD/5-FC system has a high antitumor activity in vivo. To summarize, CD gene has been cloned and its bioactivity has been confirmed in the mammalian cells. It is the first time in this study to utilize the recombinant NDV to deliver the CD gene into the tumor cells; our result proves the rClone30-CD/5-FC system is a potential method for cancer therapy.