Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Language
Year range
1.
Journal of Medical Biomechanics ; (6): E319-E326, 2016.
Article in Chinese | WPRIM | ID: wpr-804078

ABSTRACT

Blood vessels are often subjected to axial torsion (or twist) due to body movement or surgery. However, there are few studies on blood vessel under twist. This review first summarizes the clinical observation on the twist of blood vessels and then presents what we know about the mechanical behaviors of blood vessel under twist, including the constitutive models. The state of art researches on the remodeling of blood vessels under twist via ex vivo organ culture, in vivo animal experiments, and mathematical model simulations are further discussed. It is our hope that this review will draw attention for further in-depth studies on the behavior and remodeling of blood vessels under twist.

2.
Journal of Medical Biomechanics ; (6): E440-E446, 2014.
Article in Chinese | WPRIM | ID: wpr-804348

ABSTRACT

Objective To investigate the role of pathologically increased-cyclic stretch in proliferation of vascular smooth muscle cells (VSMCs) during hypertension, and the effect of Forkhead box protein O1 (FOXO1) during this process. Methods Coarctation of abdominal aorta above kidney artery of rat was used as hypertensive animal model, and sham-operated animal as control. FX-4000 cyclic stretch loading system was used to apply 5% physiologically cyclic stretch and 15% pathologically cyclic stretch during hypertension on VSMCs in vitro. Western blot was used to reveal the expressions of FOXO1 and phosphor-FOXO1 in VSMCs, and BrdU kit to detect the proliferation of VSMCs in vitro. By using RNA interference in static, the role of FOXO1 on cell proliferation was further detected. Results After abdominal aorta coarctation for 2 and 4 weeks, respectively, the blood pressure was significantly increased compared with the sham operated rats. The proliferation of vascular cells in aorta of hypertensive rat was significantly increased, and so did the expressions of FOXO1 and phosphor-FOXO1. In vitro experiment revealed that 15% cyclic stretch remarkably increased the proliferation and expressions of FOXO1 and phospho FOXO1 in VSMCs. Target siRNA transfection in static decreased the expression of FOXO1 and phosphor-FOXO1, as well as the proliferation of VSMCs. Conclusions Pathologically increased-cyclic stretch may increase the expression and phosphorylation of FOXO1, subsequently modulate VSMC proliferation during hypertension. Based on animal models, this study intends to reveal the role of FOXO1 in vascular reconstruction of hypertension and the involved biomechanical mechanism, so as to make the mechanobiological mechanism of hypertension explicit and discover new target in the prevention and treatment of vascular remodeling.

3.
Acta Physiologica Sinica ; (6): 14-26, 2012.
Article in Chinese | WPRIM | ID: wpr-335947

ABSTRACT

The present study was designed to test the hypothesis that a medium-term simulated microgravity can induce region-specific remodeling in large elastic arteries with their innermost smooth muscle (SM) layers being most profoundly affected. The second purpose was to examine whether these changes can be prevented by a simulated intermittent artificial gravity (IAG). The third purpose was to elucidate whether vascular local renin-angiotensin system (L-RAS) plays an important role in the regional vascular remodeling and its prevention by the gravity-based countermeasure. This study consisted of two interconnected series of in-vivo and ex-vivo experiments. In the in-vivo experiments, the tail-suspended, hindlimb unloaded rat model was used to simulate microgravity-induced cardiovascular deconditioning for 28 days (SUS group); and during the simulation period, another group was subjected to daily 1-hour dorso-ventral (-G(x)) gravitation provided by restoring to normal standing posture (S + D group). The activity of vascular L-RAS was evaluated by examining the gene and protein expression of angiotensinogen (Ao) and angiotensin II receptor type 1 (AT1R) in the arterial wall tissue. The results showed that SUS induced an increase in the media thickness of the common carotid artery due to hypertrophy of the four SM layers and a decrease in the total cross-sectional area of the nine SM layers of the abdominal aorta without significant change in its media thickness. And for both arteries, the most prominent changes were in the innermost SM layers. Immunohistochemistry and in situ hybridization revealed that SUS induced an up- and down-regulation of Ao and AT1R expression in the vessel wall of common carotid artery and abdominal aorta, respectively, which was further confirmed by Western blot analysis and real time PCR analysis. Daily 1-hour restoring to normal standing posture over 28 days fully prevented these remodeling and L-RAS changes in the large elastic arteries that might occur due to SUS alone. In the ex-vivo experiments, to elucidate the important role of transmural pressure in vascular regional remodeling and differential regulation of L-RAS activity, we established an organ culture system in which rat common carotid artery, held at in-vivo length, can be perfused and pressurized at varied flow and pressure for 7 days. In arteries perfused at a flow rate of 7.9 mL/min and pressurized at 150 mmHg, but not at 0 or 80 mmHg, for 3 days led to an augmentation of c-fibronectin (c-FN) expression, which was also more markedly expressed in the innermost SM layers, and an increase in Ang II production detected in the perfusion fluid. However, the enhanced c-FN expression and increased Ang II production that might occur due to a sustained high perfusion pressure alone were fully prevented by daily restoration to 0 or 80 mmHg for a short duration. These findings from in-vivo and ex-vivo experiments have provided evidence supporting our hypothesis that redistribution of transmural pressures might be the primary factor that initiates region-specific remodeling of arteries during microgravity and the mechanism of IAG is associated with an intermittent restoration of the transmural pressures to their normal distribution. And they also provide support to the hypothesis that L-RAS plays an important role in vascular adaptation to microgravity and its prevention by the IAG countermeasure.


Subject(s)
Animals , Male , Rats , Angiotensinogen , Genetics , Metabolism , Aorta, Abdominal , Pathology , Carotid Artery, Common , Pathology , Hindlimb Suspension , Muscle, Smooth, Vascular , Metabolism , Pathology , RNA, Messenger , Genetics , Metabolism , Rats, Sprague-Dawley , Receptor, Angiotensin, Type 1 , Genetics , Metabolism , Renin-Angiotensin System , Physiology , Weightlessness Simulation
4.
Journal of Medical Biomechanics ; (6): E007-E012, 2012.
Article in Chinese | WPRIM | ID: wpr-803974

ABSTRACT

Arteries in vivo are subjected to lumen pressure, shear flow and axial tension due to surrounding tissue tethering. The axial stress affects arterial function including its response to pressure and flow. While the effects of blood pressure and shear flow are well documented, the effects of axial tension on vascular remodeling have just gradually gained attention recently. This review summarizes the results on the observation of the axial tension in arteries and responses of arteries to elevation and reduction of the axial stress. It is concluded that the axial tension in arteries plays an important role in regulating normal arterial function and tissue remodeling and adaptation and disease development. Research on vascular remodeling under axial tension shall strengthen the understanding of normal physiological functions and pathological changes of the arteries.

SELECTION OF CITATIONS
SEARCH DETAIL