ABSTRACT
BACKGROUND:Periodontitis is an inflammatory and destructive disease with plaque biofilm as the main pathogenic material,which occurs in the gingiva,periodontal ligament,alveolar bone and cementum.The antigen of bacterial complex and its secreted toxin and enzyme directly lead to the destruction of periodontal tissue and trigger the host's immune response,causing indirect damage to the body tissue.Silence information regulatory factors(Sirtuins,SIRTs)play an important role in anti-aging,anti-oxidative stress,regulating inflammation,and mediating autophagy,and are closely related to the occurrence and development of periodontitis. OBJECTIVE:To review the research status of Sirtuins in periodontitis. METHODS:The first author used the computer to search the relevant research regarding the role of Sirtuins in periodontitis in PubMed,Web of Scene,CNKI and WanFang databases.The key words were"Sirtuins,Sirtuin1-7,periodontitis"in English and Chinese.After literature screening,57 articles were included for review and analysis. RESULTS AND CONCLUSION:SIRT1,SIRT2,SIRT3,and SIRT6 participate in regulating the occurrence and development of periodontitis.Inhibition of SIRT1 expression may be the target of periodontitis treatment,while overexpression of SIRT1 can inhibit periodontitis and protect periodontal tissue.The activator of SIRT1 can reduce the inflammation of periodontal tissue and improve the systemic pathological changes caused by periodontitis.SIRT2 is involved in nicotinamide phosphoribosyltransferase-mediated periodontal inflammation and plays a role in the treatment and prognosis of periodontal diseases.SIRT3 can improve age-related periodontal disease.Gastrodin promotes the osteogenic differentiation of periodontal ligament stem cells through the up-regulation of SIRT3.The activator of SIRT3 reduces the damage of periodontitis to periodontal and renal tissues by regulating the level of autophagy in the cells.SIRT6 can inhibit the inflammatory reaction of periodontal tissue and inhibit the differentiation and mineralization of cementoblasts.SIRT6 is beneficial to the prognosis of periapical periodontitis.The relationship between SIRT4,SIRT5,SIRT7 and periodontitis is rarely reported.
ABSTRACT
BACKGROUND:Deferoxamine mesylate is a potential anti-osteoporosis drug with iron chelation,vascular regeneration,and antioxidant effects.Recent studies have shown that the application of deferoxamine mesylate can be extended to the field of tissue regeneration engineering. OBJECTIVE:To investigate whether deferoxamine mesylate can promote the repair effect of iron overload osteoporotic rats after bone grafting for mandibular bone defects by simulating the state of iron accumulation in patients with postmenopausal osteoporosis with high iron intervention in osteoporotic rats. METHODS:An iron accumulation ovariectomized osteoporosis model was firstly constructed.The model group underwent bilateral ovariectomy,and the intraperitoneal injection of ferric ammonium citrate(90 mg/kg,twice a week,for 11 weeks)was started in the 2nd week,while the sham-operated group had some fat around the ovaries removed and was given an equal amount of saline for 11 weeks.After the successful modeling,the experimental rats were divided into sham-operated group(n=6),high iron ovariectomtized group(n=6)and high iron ovariectomized deferoxamine mesylate treatment group(deferoxamine mesylate group,n=6).Bone defects of 5 mm in diameter were established in the rat's bilateral mandibles and implanted with Bio-Oss bone powder.Intraperitoneal injection of deferoxamine mesylate(100 mg/kg,3 times a week)was started on postoperative day 4 in the deferoxamine mesylate group,and equal volume of saline was given in the sham-operated and high iron ovariectomized groups.The bone samples of the mandible,liver and blood were taken at 2 and 12 weeks after bone grafting for Prussian blue staining of the jaw and liver and ELISA detection of serum ferritin to detect iron levels in various body tissues;hematoxylin-eosin staining and Masson staining were performed to observe inflammatory cell infiltration and early osteogenesis in the bone defect area;tartrate resistant acid phosphatase staining was performed to observe osteoclast differentiation;ELISA was performed to detect serum calcitonin and type I collagen C-terminal peptide levels;and Micro-CT and hematoxylin-eosin staining were performed to observe osteogenesis in the middle and late stages. RESULTS AND CONCLUSION:The number of tibial trabeculae was reduced and the trabeculae were sparsely arranged in the high iron ovariectomized group.Iron levels in the liver,jaw bone and serum were significantly higher in the high iron ovariectomized group than the sham-operated group at 2 weeks after bone grafting,while the iron levels were significantly decreased after deferoxamine mesylate intervention(P<0.05).In the early stage of bone defect repair,more inflammatory cell infiltration,less new bone matrix and less type I collagen fiber production were observed in the high iron ovariectomized group than in the sham-operated group(P<0.05);after deferoxamine mesylate treatment,inflammatory cell infiltration was reduced,a small amount of new bone matrix was produced and collagen fibers increased significantly(P<0.05).In the middle and late stages of bone defect repair,Micro-CT results showed a reduction in new bone production in the high iron ovariectomized group compared with the sham-operated group and increased new bone matrix after deferoxamine mesylate treatment(P<0.05).Compared with the sham-operated group,the osteoclast number,serum calcitonin level,and serum type I collagen C-terminal peptide level were increased in the high-iron ovariectomized group,while the osteoclast number was decreased and bone metabolic indexes were improved after treatment with deferoxamine mesylate.To conclude,in ovariectomized rats with high iron intervention,elevated iron levels can be seen in multiple tissues,accompanied by reduced new bone production in the mandibular bone defect area.Deferoxamine mesylate can improve bone metabolism and inhibit osteoclast activity by removing iron deposits in tissues,improve bone formation in iron-accumulated osteoporotic rats,and promote bone healing in the mandibular bone defect area.