ABSTRACT
Objective:To investigate the clinical significance of suction blister transplantation in improving the efficacy of ReCell technique in the treatment of vitiligo.Methods:Patients were divided into three groups, namely, vitiligo patients without history of suction blister therapy, patients with ineffective suction blister therapy and patients with effective suction blister therapy. There were 30 patients in each group. All patients were treated with standard procedure of ReCell technique. The color recovery effect of leukoplakia was observed 3 and 6 months after operation, and the incidence of complications was also observed.Results:The effective rate of color recovery 3 and 6 months after operation were as follow: in patients without history of suction blister group, the effective rate of three months was 53.3%, and that of six months was 63.3%; in patients with ineffective suction blister group, the effective rate was 43.3% in three months and 50.0% in six months, and in patients with effective suction blister group, the effective rate was 76.7% in three months and 90.0% in six months. No obvious complications were observed in the three groups.Conclusions:For the treatment of stable vitiligo with ReCell technique, suction blister method is a simple and effective method for screening patients.
ABSTRACT
Objective To explore the effects of cotransplantation with osteoblasts on hematopoietic reconstitution in mice after bone marrow transplantation (BMT). Methods The typical model of syngeneic BMT was established. 18 Balb/c mice were used to prepare the bone marrow nuclear cells and osteoblasts for BMT. The 42 Balb/c mice were randomly divided into 3 group:normal group (6 mice, without any treatment), the single BMT group ( 18 mice, given 2 × 106 bone marrow nuclear cells/each mouse) and the cotransplantation group of HSC with osteoblaats (18 mice,given 2 × 106 bone marrow nuclear cells and osteoblasts/each mouse). The following factors were measured on day 7, 14, 21 after BMT: peripheral blood cells, bone marrow mononuclear cells (BMMNC), the percentage of CD34+ cells in BMMNC (assayed by flow cytometry), the hematopoietic tissue changes (detected by HPIAS-1000 image analysis system) and micro vascular density (MVD) of bone marrow tissue (with immunohistochemistry). Results The levels of periphral WBC, RBC, PLT, BMMNC in the contransplantation group were higher than those in the single BMT group (P<0. 01 or P<0. 05). In the contransplantation group, the percentage of CD34+ cells in BMMNC, the hematopoietic tissue area and the MVD of bone marrow were also higher than the single BMT group on the 7th, 14th, 21st day after BMT(P<0.01 or P<0.05). Conclusion Cotransplantation with osteoblasts could significantly promote hematopoietic reconstruction in mice after BMT. Cotransplantation may represent a promising means of achieving higher engraftment rate after BMT.
ABSTRACT
Recent studies indicate that immune-associated aplastic anemia (AA) resembles such autoimmune diseases as insulin-dependent diabetes and chronic autoimmune thyroiditis that belong to organ-specific autoimmune diseases. Many independent investigation groups have successfully isolated the pathopoiesis-associated T cell clone causing hematopoiesis failure with a CD4 phenotype from peripheral blood and bone marrow (BM) in AA patients. In the current study, BM CD4(+) T cells were isolated from AA patients and healthy controls with immunomagnetic beads sorting, and proliferation capability, apoptosis features and the impacts of their secreted cytokines on hematopoiesis stem/progenitor cells were compared between them. By (3)H-TdR method, CD4(+) T cells in AA group presented more enhanced proliferative activity. The stimulation index in control group and AA group was 1.47+/-0.24, and 2.51+/-0.34 respectively (P<0.01). After BM CD4(+) T cells were induced by high concentration of CD3 monoclonal antibody for 18 h, evident apoptosis cells could be seen under the electron microscope in both control group and AA group. Flow cytometry revealed that apoptosis rates in the early and late stages of AA group were significantly higher than in control group (P<0.01). Early-stage apoptosis rate in control and AA groups was (6.85+/-1.48)% and (16.98+/-4.40)%, and late-stage apoptosis rate in control group and AA group was (2.65+/-1.57)% and (7.74+/-0.83)%, respectively (P<0.01). The CFU-GM count in AA group and control group was (74.50+/-9.50)/10(4) cells and (124.25+/-19.80)/10(4) cells respectively under an inverted microscope (P<0.01), and the expression levels of CyclinD3 mRNA and protein in cord blood CD34(+) cells were both down-regulated induced by BM CD4(+) T cell culture supernatant in AA patients. These results indicate that BM CD4(+) T cells of AA patients are likely in an abnormally proliferative, and activated state which can correlate intimately with AA hematopoiesis damage. BM CD4(+) T cells in AA patients can secret some soluble cytokines that can inhibit proliferation of hematopoietic stem cells by suppressing the expression of Cyclin D3, resulting in hematopoiesis failure.
ABSTRACT
To investigate p120 catenin mRNA expression in Non-Hodgkin's lymphoma (NHL) cell lines (U937, Raji, Jurkat and Molt4) and normal lymphocytes and explore the relationship between p120 catenin and Non-Hodgkins lymphoma, total RNA sample was extracted by using TRIzol and reversely transcripted into cDNA. Polymerase chain reaction was performed to detect mRNA expression of p120 catenin in NHL cell lines U937, Raji, Jurkat and Molt4. Normal lymphocytes were used as control. It was found expressions of p120 catenin 1A and 3A mRNA were high in above-mentioned NHL cell lines, but neither p120 catenin 1A nor 3A was found in normal lymphocytes as shown by RT-PCR. It is concluded that both P120ctn1A and P120ctn3A mRNA transcripts were found in all NHL cell lines U937, Raji, Jurkat and Molt4 but they don't exist in normal lymphocytes, suggesting p120ctn possibly is of importance in diagnosis and therapy of lymphoma.
Subject(s)
Catenins/genetics , Cell Adhesion Molecules/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Jurkat Cells , Lymphoma, Non-Hodgkin/genetics , Lymphoma, Non-Hodgkin/pathology , Phosphoproteins/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Biomarkers, Tumor/genetics , U937 CellsABSTRACT
To investigate p120 catenin Mrna expression in Non-Hodgkin's lymphoma (NHL) cell lines (U937, Raji, Jurkat and Molt4) and normal lymphocytes and explore the relationship between p120 catenin and Non-Hodgkin's lymphoma, total RNA sample was extracted by using TRIzol and reversely transcripted into Cdna. Polymerase chain reaction was performed to detect Mrna expression of p120 catenin in NHL cell lines U937, Raji, Jurkat and Molt4. Normal lymphocytes were used as control. It was found expressions of p120 catenin 1A and 3A Mrna were high in above-mentioned NHL cell lines, but neither p120 catenin 1A nor 3A was found in normal lymphocytes as shown by RT-PCR. It is concluded that both P120ctn1A and P120ctn3A Mrna transcripts were found in all NHL cell lines U937, Raji, Jurkat and Molt4 but they don't exist in normal lymphocytes, suggesting p120ctn possibly is of importance in diagnosis and therapy of lymphoma.
ABSTRACT
Summary: In order to explore whether gene CHFR was inactivated by methylation in leukemia cells, the expression of CHFR was examined before and after treatment with demethylation agent in Molt-4, Jurkat and U937 leukemia cell lines by means of RT-PCR. The methylation of promoter in Molt-4, Jurkat and U937 cells as well as 41 acute leukemia patients was analyzed by MS-PCR. The results showed that methylation of CHFR promoter was inactivated and could be reversed by treatment with a demethylating agent in Molt-4, Jurkat and U937. CHFR promoter methylation was detected in 39 % of acute leukemia patients. There was no difference in incidence of CHFR promoter methylation between acute myelocytic leukemia and acute lymphocytic leukemia. In conclusion, CHFR is frequently inactivated in acute leukemia and is a good candidate for the leukemia supper gene. By affecting mitotic checkpoint function, CHFR inactivation likely plays a key role in tumorigenesis in acute leukemia. Moreover, the methylation of gene CHFR appears to be a good index with which to predict the sensitivity of acute leukemia to microtubule inhibitors.
ABSTRACT
The transfection efficiency of oligonucleotide and plasmid to the HL-60 cell line with lipofectaminePLUS was compared through observing the transfection rate and the expression duration of exogenous gene in the target cells. The results showed that the transfection rate of oligonucleotide to the HL-60 was about 90% - 95% and it had no obvious attenuation within 84 h. However, the plasmid transfection rate was only 5% -25% and it was decreased significantly within 60 h. It was suggested that the transfection of oligonucleotide with liposomes was better than that of plasmid.
Subject(s)
Green Fluorescent Proteins/genetics , HL-60 Cells , Liposomes , Oligonucleotides/genetics , Plasmids/genetics , TransfectionABSTRACT
In order to explore whether gene CHFR was inactivated by methylation in leukemia cells, the expression of CHFR was examined before and after treatment with demethylation agent in Molt-4, Jurkat and U937 leukemia cell lines by means of RT-PCR. The methylation of promoter in Molt-4, Jurkat and U937 cells as well as 41 acute leukemia patients was analyzed by MS-PCR. The results showed that methylation of CHFR promoter was inactivated and could be reversed by treatment with a demethylating agent in Molt-4, Jurkat and U937. CHFR promoter methylation was detected in 39% of acute leukemia patients. There was no difference in incidence of CHFR promoter methylation between acute myelocytic leukemia and acute lymphocytic leukemia. In conclusion, CHFR is frequently inactivated in acute leukemia and is a good candidate for the leukemia supper gene. By affecting mitotic checkpoint function, CHFR inactivation likely plays a key role in tumorigenesis in acute leukemia. Moreover, the methylation of gene CHFR appears to be a good index with which to predict the sensitivity of acute leukemia to microtubule inhibitors.
Subject(s)
Cell Cycle Proteins/genetics , DNA Methylation , DNA, Neoplasm , Epigenesis, Genetic , Leukemia, Myeloid, Acute/genetics , Neoplasm Proteins/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Promoter Regions, Genetic/genetics , Tumor Cells, CulturedABSTRACT
To investigate the expression and significance of CD28 and CTLA4 on T cells in bone marrow of aplastic anemia (AA) mice, in vitro bone marrow mononuclear cells (BMMNCs) were activated through being incubated with PHA (15μg/mL). The expression of CD28 and CTLA4 on T cells incubated with or without PHA was detected by two-color flow cytometry. The expression of CD28 and CTLA4 was significantly increased after PHA stimulation. In the AA mice, the expression of CD28 with or without PHA stimulation was both higher than that in the normal mice (both P<0.01), but the expression of CTLA4 with or without PHA stimulation showed no significant difference in comparison to that in the normal mice (both P>0.05). In the AA mice, there were more activation and activated potential of T cells than the normal, and the abnormal expression of CD28 and CTLA4 may participate in immunological disorder mediated by T cells.
ABSTRACT
The transfection efficiency of oligonucleotide and plasmid to the HL-60 cell line with lipofectaminePLUS was compared through observing the transfection rate and the expression duration of exogenous gene in the target cells. The results showed that the transfection rate of oligonucleotide to the HL-60 was about 90 %-95 % and it had no obvious attenuation within 84 h. However,the plasmid transfection rate was only 5 %-25 % and it was decreased significantly within 60 h. It was suggested that the transfection of oligonucleotide with liposomes was better than that of plasmid.
ABSTRACT
The effects of ligustrazine on the expression of LFA-1, ICAM-1 in bone marrow tissue and the mechanism promoting hematopoietic reconstitution following bone marrow transplantation (BMT) were investigated. The 150 mice were randomly divided into 3 groups: normal group, saline group and ligustrazine group. The normal group received no treatment, while in the saline group and ligustrazine group, the mice were subjected to normal saline (0.2 ml, twice a day) and ligustrazine (0.2 ml, twice a day) respectively through a gastric tube. At the 7th, 14th, 21st and 28th day after BMT, survival rate, colony forming unit of spleen (CFU-S), peripheral blood cells and bone marrow mononuclear cells (BMMNC) were measured, histological changes in bone marrow tissue were observed and the expression level of LFA-1, ICAM-1 was detected. In ligustrazine group CFU-S counts on the 10th day and the peripheral blood WBC, PLT, BMMNC counts, hematopoietic tissue volume as well as the expression level of LFA-1 on the 7th, 14th, 21st, 28th day after BMT were higher than in saline group (P<0.01 or P<0.05). Mature RBC volume and the expression level of ICAM-1 were significantly lower in the ligustrazine group than in the saline group (P<0.01 or P<0.05). In the ligustrazine group, fat tissue volume was higher on the 7th, 14th day after BMT (P<0.01) and was lower on the 21st, 28th day (P<0.01) after BMT than in the saline group. It was concluded that Ligustrazine could improve bone marrow microenvironment and promote hematopoietic reconstitution.
Subject(s)
Animals , Female , Male , Mice , Bone Marrow Transplantation , Hematopoiesis , Hematopoietic Stem Cells , Metabolism , Intercellular Adhesion Molecule-1 , Genetics , Lymphocyte Function-Associated Antigen-1 , Genetics , Mice, Inbred BALB C , Pyrazines , Pharmacology , Random AllocationABSTRACT
To study the expression of the bFGF and its receptor in the mouse bone marrow by treatment with acute radioactive injury and Ligustrazine, 56 mice were divided into 3 groups: normal group, radiation-injured group and Ligustrazine group. After irradiation by 6.0 Gy 60Co gamma-ray, each mouse was orally given 0.1 ml Ligustrazine twice a day for 13 days in Ligustrazine group, and each mouse in radiation injured group was orally given equal amount of saline. On the 3rd, 7th, 14th day after irradiation, bone marrow mono-nuclear cells (BMMNC) were counted, and the expression levels of bPGF and bFGFR in bone marrow were evaluated by immunohistochemistry and flow cytometry analysis respectively. On the 3rd, 7th, 14th day after irradiation, expression of bFGF in bone marrow were significantly lower than in normal group (P<0.05 or P<0.01). Expressions of bFGF and bFGFR were much higher in Ligustrazine treated group than that in the control group (P<0.05 or P<0.01). Ligustrazine potentiate the expression of bFGF and bFGFR in bone marrow MNC to recover the bone marrow hematopoiesis inductive microenvironment, which is one of the mechanisms by which Ligustrazine rebuild the bone marrow hematopoiesis after acute radioactive injury.
Subject(s)
Animals , Female , Male , Mice , Bone Marrow Cells , Metabolism , Fibroblast Growth Factor 2 , Hematopoiesis , Pyrazines , Pharmacology , Radiation Injuries, Experimental , Metabolism , Radiation-Protective Agents , Pharmacology , Receptors, Fibroblast Growth FactorABSTRACT
To study the expression of the bFGF and its receptor in the mouse bone marrow by treatment with acute radioactive injury and Ligustrazine, 56 mice were divided into 3 groups: normal group, radiation-injured group and Ligustrazine group. After irradiation by 6.0 Gy 60Co gamma-ray, each mouse was orally given 0.1 ml Ligustrazine twice a day for 13 days in Ligustrazine group, and each mouse in radiation injured group was orally given equal amount of saline. On the 3rd, 7th, 14th day after irradiation, bone marrow mono-nuclear cells (BMMNC) were counted, and the expression levels of bPGF and bFGFR in bone marrow were evaluated by immunohistochemistry and flow cytometry analysis respectively. On the 3rd, 7th, 14th day after irradiation, expression of bFGF in bone marrow were significantly lower than in normal group (P<0.05 or P<0.01). Expressions of bFGF and bFGFR were much higher in Ligustrazine treated group than that in the control group (P<0.05 or P<0.01). Ligustrazine potentiate the expression of bFGF and bFGFR in bone marrow MNC to recover the bone marrow hematopoiesis inductive microenvironment, which is one of the mechanisms by which Ligustrazine rebuild the bone marrow hematopoiesis after acute radioactive injury.
Subject(s)
Bone Marrow Cells/metabolism , Fibroblast Growth Factor 2/biosynthesis , Hematopoiesis/drug effects , Pyrazines/pharmacology , Radiation Injuries, Experimental/metabolism , Radiation-Protective Agents/pharmacology , Receptors, Fibroblast Growth Factor/biosynthesisABSTRACT
In order to investigate the regulative function of telomerase and phosphorylated (activated) extracellular regulated protein kinase (ERK) 1 and 2 in the leukemic cell lines HL-60 and K562 proliferation inhibition and apoptosis, three chemotherapeutic drugs Harringtonine (HRT), Vincristine (VCR) and Etoposide (Vp16) were selected as inducers. The proliferation inhibition rate was detected by MTT method, the cell cycle and cell apoptosis was analyzed by flow cytometry and the telomerase activity was detected by the telomeric repeat amplification protocol (TRAP) assay and bioluminescence analysis method. The phosphorylated ERK1/2 protein expression was detected by western blot method. The results showed that HRT, VCR and Vp16 could inhibit cell proliferation, induce apoptosis, inhibit telomerase activity and down-regulate the protein expression of phosphorylated ERK. It was suggested that ERK signal transduction pathway was involved in the down-regulation of telomerase activity and the onset of apoptosis in the leukemic cells treated by HRT, VCR and Vp16.
Subject(s)
Humans , Antineoplastic Agents , Pharmacology , Apoptosis , Cell Division , Down-Regulation , Etoposide , Pharmacology , HL-60 Cells , Harringtonines , Pharmacology , K562 Cells , Mitogen-Activated Protein Kinase 3 , Mitogen-Activated Protein Kinases , Metabolism , Phosphorylation , Telomerase , Metabolism , Vincristine , PharmacologyABSTRACT
To investigate the effects of Ligustrazine on histogenesis of bone marrow in the early phase of hematopoietic reconstruction in bone marrow transplantation (BMT) mice. The syngeneic BMT mice model was established. The syngeneic BMT mice were orally given 2 mg Ligustrazine twice a day. 1, 3, 5, 7, 10, 15 and 21 day(s) after BMT, peripheral blood granulocytes and bone marrow nucleated cells (BMNC) were counted and the diameter of central vein and the area of micro-vessel in femur were measured. The effect of Ligustrazine on hematopoietic stem cells was observed by colony forming unit of spleen (CFU-S). The effect of Ligustrazine on hemopoietic progenitors was studied by observing the number of progenitors of Granulocytes/Macrophage on day 10 and day 20 after BMT. In Ligustrazine-treated group, the diameter of center veins and the area of micro-vessel of femur were all significantly less than the control group 7, 10, 15, 21 days after BMT (P < 0.01). In addition, Ligustrazine significantly increased the number of CFU-S on day 10 and the number of CFU-GM on day 10, 20 after BMT. These results indicate that Ligustrazine can accelerate the histogenesis of hemopoietic bone marrow, which may be one mechanism by which Ligustrazine promotes hematopoietic reconstitution after BMT.
Subject(s)
Animals , Female , Male , Mice , Bone Marrow Transplantation , Hematopoiesis , Hematopoietic Stem Cells , Mice, Inbred BALB C , Pyrazines , Pharmacology , Time FactorsABSTRACT
To explore the effects of platelet factor 4(PF4) on hematopoietic reconstitution and its mechanism in syngenic bone marrow transplantation (BMT). The syngenic BMT mice models were established. 20 and 26 h before irradiation, the mice were injected 20 micrograms/kg PF4 or PBS twice into abdominal cavity, then the donor bone marrow nuclear cells (BMNC) were transplanted. On the 7th day, spleen clone forming units (CFU-S) were counted. On the 7th, 14th and 21st day after BMT, the BMNC and megakaryoryocytes in bone marrow tissue were counted and the percentage of hematopoietic tissue and expression level of heparan sulfate in bone marrow tissue were assessed. In PF4-treated groups, the CFU-S counts on the 7th day were higher than those in BMT groups after BMT. The BMNC and megakaryoryocyte counts and the percentage of hematopoietic tissue and heparan sulfate expression level were higher than those in BMT group on the 7th, 14th and 21st day after BMT (P < 0.01 or P < 0.05). PF4 could accelerate hematopoietic reconstitution of syngenic bone marrow transplantation. The promotion of the heparan sulfate expression in bone marrow may be one of mechanisms of PF4.
Subject(s)
Animals , Female , Male , Mice , Bone Marrow Cells , Metabolism , Bone Marrow Transplantation , Hematopoietic Stem Cells , Cell Biology , Heparitin Sulfate , Metabolism , Mice, Inbred BALB C , Platelet Factor 4 , Pharmacology , Radiation-Protective Agents , Pharmacology , Random Allocation , Spleen , Cell Biology , Stem Cells , Whole-Body IrradiationABSTRACT
To investigate the effects of Ligustrazine on histogenesis of bone marrow in the early phase of hematopoietic reconstruction in bone marrow transplantation (BMT) mice. The syngeneic BMT mice model was established. The syngeneic BMT mice were orally given 2 mg Ligustrazine twice a day. 1, 3, 5, 7, 10, 15 and 21 day(s) after BMT, peripheral blood granulocytes and bone marrow nucleated cells (BMNC) were counted and the diameter of central vein and the area of micro-vessel in femur were measured. The effect of Ligustrazine on hematopoietic stem cells was observed by colony forming unit of spleen (CFU-S). The effect of Ligustrazine on hemopoietic progenitors was studied by observing the number of progenitors of Granulocytes/Macrophage on day 10 and day 20 after BMT. In Ligustrazine-treated group, the diameter of center veins and the area of micro-vessel of femur were all significantly less than the control group 7, 10, 15, 21 days after BMT (P < 0.01). In addition, Ligustrazine significantly increased the number of CFU-S on day 10 and the number of CFU-GM on day 10, 20 after BMT. These results indicate that Ligustrazine can accelerate the histogenesis of hemopoietic bone marrow, which may be one mechanism by which Ligustrazine promotes hematopoietic reconstitution after BMT.