Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Add filters

Year range
Rev. bras. farmacogn ; 28(3): 282-288, May-June 2018. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-958878


ABSTRACT The objective of this study was to perform preliminary screening of phytochemical compounds and quantification of major phenolics and flavonoid markers in Italian ryegrass extract using HPLC-DAD. Previously, LC-MS analysis has identified different phenolic acids, including caffeic acid, ferulic acid, p-coumaric acid, chlorogenic acid, dihydroxy benzoic acid, propyl gallate, catechin, and six flavonoids including rutin hydroxide, luteolin, kaemferol, vitexin, narcissoside, and myricetin from Italian ryegrass extract. In the present study, Italian ryegrass silage powder was extracted with ethanol: water for 20 min at 90 °C. The extract targeted optimum yield of phenolic acids and flavonoids. Crude phenolic acid and flavonoids were then purified by solid phase extraction method. Purified fractions were then injected into HPLC with a diode-array detector. Quantified concentrations of isolated phenolic acids and flavonoids ranged from 125 to 220 µg/g dry weight. Limits of detection and limits of quantification for all standards (unknown compounds) ranged from 0.38 to 1.71 and 0.48 to 5.19 µg/g dry weight, respectively. Obtained values were compared with previous literatures, indicating that our HPLC-DAD quantification method showed more sensitivity. This method showed better speed, accuracy, and effectiveness compared to previous reports. Furthermore, this study could be very useful for developing phenolic acids and flavonoids from compositions in Italian ryegrass silage feed for pharmaceutical applications and ruminant animals in livestock industries.

Biol. Res ; 49: 1-11, 2016. ilus, graf
Article in English | LILACS | ID: biblio-950864


BACKGROUND: From ancient times, marine algae have emerged as alternative medicine and foods, contains the rich source of natural products like proteins, vitamins, and secondary metabolites, especially Chlorella vulgaris (C. vulgaris) contains numerous anti-inflammatory, antioxidants and wound healing substances. Type 2 diabetes mellitus is closely associated with adipogenesis and their factors. Hence, we aimed to investigate the chemical constituents and adipo-genic modulatory properties of C. vulgaris in 3T3-L1 pre-adipocytes. RESULTS: We analysed chemical constituents in ethanolic extract of C. vulgaris (EECV) by LC-MS. Results revealed that the EECV contains few triterpenoids and saponin compounds. Further, the effect of EECV on lipid accumulation along with genes and proteins expressions which are associated with adipogenesis and lipogenesis were evaluated using oil red O staining, qPCR and western blot techniques. The data indicated that that EECV treatment increased differentiation and lipid accumulation in 3T3-L1 cells, which indicates positive regulation of adipogenic and lipogenic activity. These increases were associated with up-regulation of PPAR-γ2, C/EBP-α, adiponectin, FAS, and leptin mRNA and protein expressions. Also, EECV treatments increased the concentration of glycerol releases as compared with control cells. Troglitazone is a PPAR-γ agonist that stimulates the PPAR-y2, adiponectin, and GLUT-4 expressions. Similarly, EECV treatments significantly upregulated PPAR-γ, adiponectin, GLUT-4 expressions and glucose utilization. Further, EECV treatment decreased AMPK-α expression as compared with control and metformin treated cells. CONCLUSION: The present research findings confirmed that the EECV effectively modulates the lipid accumulation and differentiation in 3T3-L1 cells through AMPK-α mediated signalling pathway.

Animals , Mice , Seaweed/chemistry , Plant Extracts/pharmacology , 3T3-L1 Cells/drug effects , Chlorella vulgaris/chemistry , Time Factors , Down-Regulation , Gene Expression , Cell Differentiation/drug effects , Up-Regulation , Cell Survival/drug effects , Cells, Cultured , Adipocytes/cytology , Adipocytes/drug effects , Adipocytes/metabolism , Reverse Transcriptase Polymerase Chain Reaction , 3T3-L1 Cells/physiology , PPAR gamma/analysis , PPAR gamma/drug effects , PPAR gamma/metabolism , Diabetes Mellitus, Type 2/metabolism , Adiponectin/analysis , Adiponectin/metabolism , Glucose Transporter Type 4/analysis , Glucose Transporter Type 4/drug effects , Glucose Transporter Type 4/metabolism , AMP-Activated Protein Kinases/analysis , AMP-Activated Protein Kinases/drug effects , AMP-Activated Protein Kinases/metabolism , Glucose/metabolism
Article in Chinese | WPRIM | ID: wpr-672928


Objective: To elucidate the key parameters associated with hydrogen peroxide induced oxidative stress and investigates the mechanism of trigonelline (TG) for reducing the H2O2 induced toxicity in H9c2 cells. Methods: Cytotoxicity and antioxidant activity of TG was assessed by EZ-CYTOX kit. RNA extraction and cDNA synthesized according to the kit manufacture protocol. Apoptosis was measured by the Flowcytometry, general PCR and qPCR. Results: It was found that the TG significantly rescued the morphology of the H9c2 cells. Treatment of cells with TG attenuated H2O2 induced cell deaths and improved the antioxidant activity. In addition, TG regulated the apoptotic gene caspase-3, caspase-9 and anti-apoptotic gene Bcl-2, Bcl-XL during H2O2 induced oxidative stress in H9c2 cells. These results were comparable with quercetin treatment. For evident, flow cytometer results also confirmed the TG significantly reduced the H2O2 induced necrosis and apoptosis in H9c2 cells. However, further increment of TG concentration against H2O2 could induce the necrosis and apoptosis along with H2O2. Conclusions: It is suggested that less than 125 μM of TG could protect the cells from H2O2 induced cell damage by down regulating the caspases and up regulating the Bcl-2 and Bcl-XL expression. Therefore, we suggest the trigonelline could be useful for treatment of oxidative stress mediated cardiovascular diseases in future.

Acta Pharmaceutica Sinica B ; (6): 173-181, 2014.
Article in English | WPRIM | ID: wpr-329738


Colon cancer is a world-wide health problem and the second-most dangerous type of cancer, affecting both men and women. The modern diet and lifestyles, with high meat consumption and excessive alcohol use, along with limited physical activity has led to an increasing mortality rate for colon cancer worldwide. As a result, there is a need to develop novel and environmentally benign drug therapies for colon cancer. Currently, nutraceuticals play an increasingly important role in the treatment of various chronic diseases such as colon cancer, diabetes and Alzheimer׳s disease. Nutraceuticals are derived from various natural sources such as medicinal plants, marine organisms, vegetables and fruits. Nutraceuticals have shown the potential to reduce the risk of colon cancer and slow its progression. These dietary substances target different molecular aspects of colon cancer development. Accordingly, this review briefly discusses the medicinal importance of nutraceuticals and their ability to reduce the risk of colorectal carcinogenesis.