Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Add filters

Year range
Cancer Research and Treatment ; : 766-777, 2023.
Article in English | WPRIM | ID: wpr-999799


Purpose@#We investigated the consistent efficacy and safety of eflapegrastim, a novel long-acting granulocyte-colony stimulating factor (G-CSF), in Koreans and Asians compared with the pooled population of two global phase 3 trials. @*Materials and Methods@#Two phase 3 trials (ADVANCE and RECOVER) evaluated the efficacy and safety of fixed-dose eflapegrastim (13.2 mg/0.6 mL [3.6 mg G-CSF equivalent]) compared to pegfilgrastim (6 mg based on G-CSF) in breast cancer patients who received neoadjuvant or adjuvant docetaxel/cyclophosphamide. The primary objective was to demonstrate non-inferiority of eflapegrastim compared to pegfilgrastim in mean duration of severe neutropenia (DSN) in cycle 1, in Korean and Asian subpopulations. @*Results@#Among a total of 643 patients randomized to eflapegrastim (n=314) or pegfilgrastim (n=329), 54 Asians (29 to eflapegrastim and 25 to pegfilgrastim) including 28 Koreans (14 to both eflapegrastim and pegfilgrastim) were enrolled. The primary endpoint, DSN in cycle 1 in the eflapegrastim arm was non-inferior to the pegfilgrastim arm in Koreans and Asians. The DSN difference between the eflapegrastim and pegfilgrastim arms was consistent across populations: –0.120 days (95% confidence interval [CI], –0.227 to –0.016), –0.288 (95% CI, –0.714 to 0.143), and –0.267 (95% CI, –0.697 to 0.110) for pooled population, Koreans and Asians, respectively. There were few treatment-related adverse events that caused discontinuation of eflapegrastim (1.9%) or pegfilgrastim (1.5%) in total and no notable trends or differences across patient populations. @*Conclusion@#This study may suggest that eflapegrastim showed non-inferior efficacy and similar safety compared to pegfilgrastim in Koreans and Asians, consistently with those of pooled population.

Cancer Research and Treatment ; : 322-333, 2016.
Article in English | WPRIM | ID: wpr-64173


PURPOSE: Heterochromatin protein 1gamma (HP1gamma) interacts with chromosomes by binding to lysine 9-methylated histone H3 or DNA/RNA. HP1gamma is involved in various biological processes. The purpose of this study is to gain an understanding of how HP1gamma functions in these processes by identifying HP1gamma-binding proteins using mass spectrometry. MATERIALS AND METHODS: We performed affinity purification of HP1gamma-binding proteins using G1/S phase or prometaphase HEK293T cell lysates that transiently express mock or FLAG-HP1gamma. Coomassie staining was performed for HP1gamma-binding complexes, using cell lysates prepared by affinity chromatography FLAG-agarose beads, and the bands were digested and then analyzed using a mass spectrometry. RESULTS: We identified 99 HP1gamma-binding proteins with diverse cellular functions, including spliceosome, regulation of the actin cytoskeleton, tight junction, pathogenic Escherichia coli infection, mammalian target of rapamycin signaling pathway, nucleotide excision repair, DNA replication, homologous recombination, and mismatch repair. CONCLUSION: Our results suggested that HP1gamma is functionally active in DNA damage response via protein-protein interaction.

Actin Cytoskeleton , Biological Phenomena , Chromatography, Affinity , DNA Damage , DNA Mismatch Repair , DNA Repair , DNA Replication , DNA , Escherichia coli Infections , Heterochromatin , Histones , Homologous Recombination , Lysine , Mass Spectrometry , Prometaphase , Sirolimus , Spliceosomes , Tight Junctions
Genomics & Informatics ; : 164-173, 2013.
Article in English | WPRIM | ID: wpr-11259


Genomic instability, which occurs through both genetic mechanisms (underlying inheritable phenotypic variations caused by DNA sequence-dependent alterations, such as mutation, deletion, insertion, inversion, translocation, and chromosomal aneuploidy) and epigenomic aberrations (underlying inheritable phenotypic variations caused by DNA sequence-independent alterations caused by a change of chromatin structure, such as DNA methylation and histone modifications), is known to promote tumorigenesis and tumor progression. Mechanisms involve both genomic instability and epigenomic aberrations that lose or gain the function of genes that impinge on tumor suppression/prevention or oncogenesis. Growing evidence points to an epigenome-wide disruption that involves large-scale DNA hypomethylation but specific hypermethylation of tumor suppressor genes, large blocks of aberrant histone modifications, and abnormal miRNA expression profile. Emerging molecular details regarding the modulation of these epigenetic events in cancer are used to illustrate the alterations of epigenetic molecules, and their consequent malfunctions could contribute to cancer biology. More recently, intriguing evidence supporting that genetic and epigenetic mechanisms are not separate events in cancer has been emerging; they intertwine and take advantage of each other during tumorigenesis. In addition, we discuss the collusion between epigenetics and genetics mediated by heterochromatin protein 1, a major component of heterochromatin, in order to maintain genome integrity.

Biology , Carcinogenesis , Chromatin , DNA , DNA Methylation , Epigenomics , Genes, Tumor Suppressor , Genetics , Genome , Genomic Instability , Heterochromatin , Histones , MicroRNAs , Sequence Deletion
Experimental & Molecular Medicine ; : 195-204, 2010.
Article in English | WPRIM | ID: wpr-203593


Chromatin structure has a crucial role in a diversity of physiological processes, including development, differentiation and stress responses, via regulation of transcription, DNA replication and DNA damage repair. Histone deacetylase (HDAC) inhibitors regulate chromatin structure and activate the DNA damage checkpoint pathway involving Ataxia-telangiectasia mutated (ATM). Herein, we investigated the impact of histone acetylation/deacetylation modification on the ATM-mediated transcriptional modulation to provide a better understanding of the transcriptional function of ATM. The prototype HDAC inhibitor trichostain A (TSA) reprograms expression of the myeloid cell leukemia-1 (MCL1) and Gadd45alpha genes via the ATM-mediated signal pathway. Transcription of MCL1 and Gadd45alpha is enhanced following TSA treatment in ATM+ cells, but not in isogenic ATM- or kinase-dead ATM expressing cells, in the ATM-activated E2F1 or BRCA1-dependent manner, respectively. These findings suggest that ATM and its kinase activity are essential for the TSA-induced regulation of gene expression. In summary, ATM controls the transcriptional upregulation of MCL1 and Gadd45alpha through the activation of the ATM-mediated signal pathway in response to HDAC inhibition. These findings are important in helping to design combinatory treatment schedules for anticancer radio- or chemo-therapy with HDAC inhibitors.

Humans , Cell Cycle Proteins/genetics , DNA Damage/genetics , DNA-Binding Proteins/metabolism , E2F1 Transcription Factor/metabolism , Gene Expression Regulation/drug effects , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/metabolism , Hydroxamic Acids/pharmacology , Nuclear Proteins/genetics , Promoter Regions, Genetic/genetics , Protein Binding/drug effects , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , RNA, Messenger/genetics , Transcription, Genetic/drug effects , Tumor Suppressor Proteins/metabolism
Korean Journal of Urology ; : 1025-1027, 2006.
Article in Korean | WPRIM | ID: wpr-90507


The main cause of vesicovaginal fistula is gynecologic or obstetric manipulation, but vesicovaginal fistula as a complication of genitourinary tuberculosis is extremely rare. The diagnosis is confirmed by the histological findings, and treatment is surgical repair with antituberculous medication. We report here on the presentation and management of extensive tuberculosis that led to formation of a vesicovaginal fistula in an adult.

Adult , Humans , Diagnosis , Tuberculosis , Vesicovaginal Fistula