Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Add filters

Year range
Acta Pharmaceutica Sinica ; (12): 222-232, 2022.
Article in Chinese | WPRIM | ID: wpr-913174


The dense extracellular matrix (ECM) of the tumor severely limits the deep penetration of nanomedicine and weakens its anti-tumor effect. Based on this, the yeast vesicle biomimetic nanomedicine with active deep penetration ability of tumor tissue was designed and developed for enhanced tumor therapy. Results of characterization showed that the yeast cell vesicles (YCV) displayed a spherical morphology with diameter of around 100 nm and was well dispersed. Then the chemotherapeutic drug doxorubicin (DOX) was selected as a model drug, and DOX was loaded into YCV to obtain YCV/DOX through electrostatic interaction, the encapsulation efficiencies of DOX were calculated as 82.5%. The drug release profile of YCV/DOX implied that DOX release showed a manner of pH-dependent, it may be that pH has affected the electrostatic effect of YCV and DOX. Compared with liposomes (Lipo), in vitro cell experiments showed that YCV from natural sources had stronger permeability in three-dimensional multicellular spheres. It is speculated that the mechanism may be good deformation capacity of YCV. A 4T1 xenograft tumor model was established to evaluate the therapeutic efficacy of YCV/DOX. The results suggested that YCV/DOX has stronger tumor tissue penetration ability and could effectively inhibit the tumor growth. All animal experiments were performed in line with national regulations and approved by the Animal Experiments Ethical Committee of Zhengzhou University. This study brings new ideas for the development of biomimetic nanomedicine to overcome the ECM of solid tumors.

Article in Chinese | WPRIM | ID: wpr-304845


Reperfusion is the most effective treatment for acute myocardial infarction, markedly reducing mortality and morbidity. Reperfusion however induces necrotic and apoptotic damages to cardiomyocytes, that were viable prior to reperfusion, a process called myocardial ischemia/reperfusion injury(MI/RI). Over the past 30 years, hundreds of experimental interventions (both pharmacologic and nonpharmacologic) have been reported to protect the ischemic myocardium in experimental animals; however, with the exception of early reperfusion, none has been translated into clinical practice. The population-based survey assessed men have about twice the total incidence of morbidity and mortality of women, and the sex gap in morbidity tends to diminish after age 45 years. So hormone replacement therapy (HRT) is given to treat the MI/RI, and lots of studies shows that the side effect is greater for estrogen, compared with phyestrogen. In this article, we review the important pathogenesis of myocardial ischemia reperfusion injury, the prevention and limitations of HRT. And we highlight the mechanism of phyestrogens treatment the MI/RI in experiment. The aim is to provide the theoretically new way of develop the safe and effective products for the researchers.

Animals , Humans , Myocardial Ischemia , Drug Therapy , Myocardial Reperfusion Injury , Drug Therapy , Phytoestrogens , Plant Extracts