Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Add filters

Year range
Journal of Zhejiang University. Science. B ; (12): 853-867, 2023.
Article in English | WPRIM | ID: wpr-1010568


Research in stomatology (dental medicine) continues to expand globally and is oriented towards solving clinical issues, focusing on clarifying the clinical relevance and potential mechanisms of oral‍-‍systemic connections via clinical epidemiology, oral microecological characterization, and the establishment of animal models. Interdisciplinary integration of materials science and tissue engineering with stomatology is expected to lead to the creation of innovative materials and technologies to better resolve the most prevalent and challenging clinical issues such as peri-implantitis, soft and hard tissue defects, and dentin hypersensitivity. With the rapid development of artificial intelligence (AI), 5th generation mobile communication technology (5G), and big data applications, "intelligent stomatology" is emerging to build models for better clinical diagnosis and management, accelerate the reform of education, and support the growth and advancement of scientific research. Here, we summarized the current research status, and listed the future prospects and limitations of these three aspects, aiming to provide a basis for more accurate etiological exploration, novel treatment methods, and abundant big data analysis in stomatology to promote the translation of research achievements into practical applications for both clinicians and the public.

Animals , Oral Medicine , Artificial Intelligence
Journal of Zhejiang University. Medical sciences ; (6): 638-643, 2019.
Article in Chinese | WPRIM | ID: wpr-781022


OBJECTIVE: To investigate the effects of bio-crosslinker genipin pretreatment on type Ⅰ collagen mineralization. METHODS: Type Ⅰ collagen gels were prepared and pretreated with 0.5wt%genipin (experimental group) and deionized water (control group) for 2 h, respectively. The pretreated products were subjected to Fourier transform infrared spectroscopy (FT-IR). Reconstituted collagen fibrils were pretreated with genipin or deionized water for 2 h and were mineralized for 4 h. The collagen density and mineralization degree were examined with transmission electron microscopy (TEM) and analyzed with ImageJ software. Then scanning electron microscopy (SEM) and TEM were used to observe the mineralization of cross-linked demineralized dentin collagen. RESULTS FT-IR spectrum showed that the genipin was crosslinked with collagen. TEM observation and ImageJ results showed that after 4 h mineralization, the mineralization effect of 0.5wt% genipin group was significantly better than that of the control group[(73.3±5.3)%vs.(7.4±3.5)%,P<0.01]. TEM and SEM observation showed that the mineralization rate of type Ⅰ collagen and demineralized dentin pretreated with genipin were significantly faster than that of the control group. CONCLUSIONS The study demonstrates that 0.5 wt% concentration of genipin can significantly promote the mineralization of type Ⅰ collagen.