ABSTRACT
Sophorae Flavescentis Radix, the root of Sophora flavescens Ait., has been widely applied in the medical field due to its anti-inflammatory, analgesic, bacteriostatic, antiviral, antitumor, and other pharmacological effects. The present study investigated the anti-rheumatoid arthritis effect of oxymatrine(OMT), the active component of Sophorae Flavescentis Radix by observing its effect on the function of B lymphocytes in collagen-induced arthritis(CIA) mice through the Toll-like receptor 9(TLR9)/myeloid differentiation factor 88(MyD88)/signal transducer and activator of transcription 3(STAT3) pathway. The CIA model in DBA/1 J mice was induced by bovine type Ⅱ collagen and complete Freund's adjuvant(CFA). Fifteen days after the primary immunization, mice were treated with OMT for 30 days by intraperitoneal injection. Paw swelling and arthritis index(AI) score were evaluated every 3 days. Joint histopathologic changes were observed by HE staining. Magnetic-activated cell sorting(MACS) was used to isolate B lymphocytes from the spleen of CIA mice spleen. The serum expression level of interleukin(IL)-21 was examined by the enzyme-linked immunosorbent assay(ELISA). The expression of TLR9, STAT3, p-STAT3, and IL-21 in B lymphocytes was detected by Western blot. The mRNA expression of TLR9, STAT3, and IL-21 in B lymphocytes was detected by real-time fluorescence-based quantitative PCR(qRT-PCR). The results showed that OMT could significantly alleviate the paw swelling, decrease the AI score, relieve synovial inflammatory cell infiltration and hyperplasia, reduce the level of inflammatory cytokines, and inhibit the expression of TLR9, STAT3, p-STAT3, and IL-21 of B lymphocytes in CIA mice. Therefore, OMT may alleviate rheumatoid arthritis by regulating TLR9/MyD88/STAT3 pathway in B lymphocytes, providing a valuable reference for the application of OMT in the clinical treatment of rheumatoid arthritis.