ABSTRACT
OBJECTIVE@#To explore the pharmacological mechanism of Bushen Huatan (BSHT) recipe in the treatment of polycystic ovary syndrome (PCOS).@*METHODS@#The active ingredients in the component drugs of the recipe were screened through TCMSP, and their potential targets were predicted by PubChem and Swiss target prediction. Genecards and OMIM were used to screen the therapeutic targets in the treatment of PCOS. The drug targets and disease targets were corrected using Uniprot, and the intersection targets were obtained. The protein-protein interaction (PPI) network was constructed using STRING, and the intersection targets were analyzed with CytoNCA to screen the core targets. DAVID was used for GO enrichment analysis and KEGG pathway enrichment analysis, and the core components and core targets were verified using AutoDock. Animal experiment was performed to verify the results using a female C57BL/6J mouse model of PCOS, treated daily with 1 mg/kg BSHT recipe granule for 35 days, and the ovarian expressions of the core targets and pathways were detected using Western blotting.@*RESULTS@#We identified a total of 125 potential active ingredients from the 14 component drugs in the recipe, 990 drug targets, 4759 PCOS targets and 434 intersection targets. The core active ingredients of the recipe included β -Sitosterol, kaempferol, and quercetin, whose core targets included PIK3CA, PIK3R1, APP, AKT1, and MAPK1. GO enrichment analysis highlighted such processes as drug reaction, negative regulation of apoptosis, and positive regulation of transcription from RNA polymerase Ⅱ promoter. The enriched KEGG pathways included primarily the cancer pathway and PI3K-Akt signaling pathway. Molecular docking showed that the core active ingredients had strong binding ability with the core targets. In the animal experiment, BSHT recipe was shown to improve the symptoms, down-regulate the expressions of PI3K and Akt proteins and up-regulate MAPK1 expression in the ovary of mice with PCOS.@*CONCLUSION@#The therapeutic mechanism of BSHT recipe for PCOS involves multiple active ingredients, multiple therapeutic targets and multiple pathways.
Subject(s)
Animals , Female , Mice , Drugs, Chinese Herbal/therapeutic use , Mice, Inbred C57BL , Molecular Docking Simulation , Network Pharmacology , Phosphatidylinositol 3-Kinases , Polycystic Ovary Syndrome/drug therapyABSTRACT
Objective: To compare the expression and difference of melastatin-related transient receptor potential 8(TRPM8) among chronic rhinosinusitis, nasal polyps and normal mucosa tissues. And to explore the significant expression of TRPM8 among CRSwNP. Methods: Fifty-one patients underwent endoscopic sinus surgery in the Department of Otorhinolaryngology Head and Neck Surgery of Renmin Hospital of Wuhan University from February 2019 to January 2020 were recruited, including 33 males and 18 females, aged from 14 to 65 years old (34.55±1.689).Immunohistochemistry was used to detected the expression of TRPM8 protein among CRSsNP(17),CRSwNP (17) and control tissuses(17). In addition, the correlation between the expression of TRPM8 protein in CRSwNP patients and preoperative CT Lund-Mackay scores and preoperative VAS scores and sinonasal outcome test-20 scores was analyzed, respectively. The primary human nasal epithelial cells were cultured in vitro and the expression of TRPM8 was detected by quantitative real-time PCR and western blotting . The tissue in control group, chronic rhinosinusitis without nasal polyps (CRSsNP) group and the CRSwNP group were collected and grinded into tissue homogenized. The expression of TRPM8 protein was detected by western blotting after 24 h stimulation after homogenate was added into the medium of RPMI 2650 and primary nasal epithelial cells. Results: Compared with the control, the expression of TRPM8 was significantly up-regulated in nasal polyps (t=6.852, P<0.05). TRPM8 was mainly expressed in epithelial cells. The expression of TRPM8 in the epithelial cells of CRSsNP had no difference with the control group (t=1.980, P>0.05). In addition, the expression of TRPM8 in CRSwNP patients was positively correlated with the preoperative CT Lund-Mackay scores and VAS scores and SNOT-20 scores (r=0.512, P<0.05;r=0.853, P<0.01;r=0.814, P<0.01). After cultured primary epithelial cells in vitro, the expression level of TRPM8 in epithelial cells derived from nasal polyp was significantly higher than that in control group (t=8.845, P<0.05). By adding the homogenization of control and CRSsNP and CRSwNP tissues, the expression of TRPM8 in RPMI 2650 cells and primary nasal epithelial cells was changed and that was significantly increased after adding the homogenization of the group of CRSwNP. Conclusion: TRPM8 is highly expressed in nasal polyps epithelial cells, suggesting that TRPM8 may be involved in the pathogenesis of nasal polyps regulated by nasal epithelial cells.
Subject(s)
Adolescent , Adult , Aged , Female , Humans , Male , Middle Aged , Young Adult , Chronic Disease , Endoscopy , Membrane Proteins , Nasal Polyps , Rhinitis , Sinusitis , TRPM Cation ChannelsABSTRACT
This study was purposed to find new biomarkers and to establish protein finger print model for diagnosis of leukemia. A total of 40 leukemia samples and 37 healthy control samptes were tested by surface enhance laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF- MS). The data of spectra were analyzed by bioinformatics tools like Biomarker Patterns 5.0 and discriminant analysis to establish diagnostic mode1. The results showed that 22 protein features were stably detected by protein fingerprint, The detective model combined with 3 biomarkers (m/z 4650, 8609 and 11660) could differentiate leukemia with sensitivity of 97.5% (39/40) and specificity of 91.9%(34/37). It is concluded that the detective model established by 3 protein features may be a novel method for diagnosis of leukemia.