Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Article in Chinese | WPRIM | ID: wpr-921623

ABSTRACT

Due to the diverse sources and unique structures, the chemical components of Chinese medicinal materials are easy to self-assemble to form nanoparticles. The formation of self-assembled nanoparticles(SAN) can not only affect the absorption and distribution of the effective ingredients in Chinese medicinal materials but also may improve the biological activity of the effective ingredients or their simple mixtures, which is of great significance for revealing the compatibility mechanism of Chinese medicine prescription, developing new Chinese medicine products, and producing new nanomaterials. This paper reviews the formation, isolation, characterization, and application of SAN of Chinese medicines, and discusses the problems and development trends of the relevant research, which can provide reference for the further study and promote the innovation and application of such SAN.


Subject(s)
Drugs, Chinese Herbal , Medicine, Chinese Traditional , Nanoparticles , Prescriptions
2.
Article in Chinese | WPRIM | ID: wpr-879177

ABSTRACT

To study the effect of self-assembled nanoparticles from Shaoyao Gancao Decoction(SGD-SAN) on the encapsulation, in vitro release and intestinal absorption of the main components of Baishao. Particle size analysis and morphological observation were used to verify the formation of SGD-SAN in the decoction. The entrapment efficiency(EE) of SGD-SAN on the main components of Baishao was determined by ultrafiltration centrifugation. The dialysis bag method was used to study the in vitro release of the main components of Baishao with pH 6.8 phosphate buffer solution as the release media. Single-pass intestinal perfusion study was performed to investigate the effect of SGD-SAN on the absorption of the main components of Baishao. The results showed that there were nanoparticles in the SGD, and the particle sizes and PDI of SGD-SAN were about 200 nm and 0.38, respectively. SGD-SAN was irregularly spherical under transmission electron microscope(TEM). The EEs of albiflorin, paeoniflorin and benzoylpaeoniflorin in SGD-SAN were 33.78%±1.03%,33.61%±0.90%,88.53%±0.58%, respectively. The release characteristics of albiflorin, paeoniflorin and benzoylpaeoniflorin from SGD-SAN showed a slow-release effect on pH 6.8 phosphate buffer solution media. SGD-SAN could significantly enhance the absorption of albiflorin, paeoniflorin and benzoylpaeoniflorin in the ileum. The results of this study indicated that SAN could be formed during the mixed decoction of Baishao and Gancao, and SGD-SAN could encapsulate the components of Baishao, with a certain slow-release effect, and the formation of SAN facilitated the absorption of drugs in the ileum.


Subject(s)
Drugs, Chinese Herbal , Intestinal Absorption , Intestines , Nanoparticles
3.
Article in Chinese | WPRIM | ID: wpr-846491

ABSTRACT

Objective: To prepare glycyrrhizic acid (GL)-Pluronic F127 (F127)/polyethylene glycol 1000 vitamin E succinate (TPGS) mixed nanomicelles (MMs) and improve oral absorption of GL. Methods: GL-F127/TPGS-MMs was prepared by thin film dispersion method. The encapsulation efficiency and drug loading of MMs were used as evaluation indexes. The formulation and process, including the ratio of F127 to TPGS, the concentration of polymer and GL, hydration temperature and time, were optimized by the single factor experiment. The morphology of MMs was investigated by transmission electron microscopy. The single-pass perfusion model was established in rats to investigate the intestinal absorption characteristics of GL-F127/TPGS-MMs with absorption rate constant (Ka) and apparent absorption coefficient (Papp) as evaluation indexes. Results: The optimal formulation and process of GL-F127/TPGS-MMs were as follows: TPGS 180 mg, F127 270 mg, GL 70 mg, hydration temperature 50 ℃ and hydration time 3 h. The prepared GL-F127/TPGS-MMs had good clarity and the particle size, polydispersity index, and Zeta potential were (28.20 ± 5.63) nm, 0.20 ± 0.06, and (-5.24 ± 1.55) mV, respectively. The encapsulation efficiency and drug loading were (97.57 ± 5.29) % and (13.13 ± 0.71) %, respectively. The MMs were spherical with distinct vesicle structure. The absorption of GL in the jejunum segment was significantly higher than that in the ileum segment (P < 0.05). Compared with raw GL, GL-F127/TPGS-MMs had a statistically significant higher absorption rate in the intestinal segment (P < 0.05). Conclusion: The prepared GL-F127/TPGS-MMs could significantly improve the absorption of GL in vivo.

4.
Article in Chinese | WPRIM | ID: wpr-878787

ABSTRACT

To prepare a new dosage form that can improve the drug loading of the film--ginkgolide B nanosuspension lyophilized powder orodispersible film(GB-NS-LP-ODF) and to evaluate its quality. Firstly, ginkgolide B nanosuspension(GB-NS) was prepared by media milling method, and then ginkgolide B nanosuspension lyophilized powder(GB-NS-LP) was prepared with freeze-drying method. The mannitol was used as lyoprotectant and its dosage was also investigated. GB-NS-LP-ODF was prepared by solvent casting method and its formulation was screened by single factor test method and optimized by orthogonal test. The appearance, mechanical properties, content uniformity and in vitro dissolution of the optimized GB-NS-LP-ODF were investigated. The particle size of prepared GB-NS was about 201 nm, and the optimal dosage of mannitol was 8%. According to the optimal formula, the GB-NS-LP-ODF was prepared with GB-NS-LP 35.6%, PVA 0588 49.4%, PEG 400 10.7% and CMS-Na 4.3%, and completely disintegrated in about 30 s, and the particle size of reconstituted GB nanoparticles from ODF was about 210 nm. The film with smooth appearance and good mechanical properties was stable within 30 days and the content uniformity(A+2.2 S<15) conformed to the regulations. Scanning electron microscope(SEM) showed that GB-NS-LP-ODFs were evenly distributed and the particle size was about 200 nm. X-rays diffraction(XRD) showed that its crystallinity was significantly lower than that of GB raw drug and GB-ODF. The results of in vitro release test showed that the drug film was completely dissoluted within 10 minutes. These results indicated that nanosuspension lyophilized powder was prepared by freeze drying of nanosuspensions, and then loaded into the orodispersible film to effectively increase the drug loading of the ODF and have broad application prospects.


Subject(s)
Ginkgolides , Lactones , Nanoparticles , Particle Size , Powders , Solubility , Suspensions
5.
Article in Chinese | WPRIM | ID: wpr-878861

ABSTRACT

To prepare and optimize the self-microemulsion co-loaded with tenuifolin and β-asarone(TF/ASA-SMEDDS) and evaluate its quality. The prescription compositions of TF/ASA-SMEDDS were screened by solubility test, single factor test and pseudo-tern-ary phase diagram, and the prescriptions were further optimized by Box-Behnken response surface method, with the drug loading and particle size as the evaluation indexes. Then the optimized TF/ASA-SMEDDS was evaluated for emulsified appearance, particle size, morphology and drug release in vitro. The optimized prescription for TF/ASA-SMEDDS was as follows: caprylic citrate triglyceride polyoxyethylene castor oil-glycerol(10.8∶39.2∶50), drug loading of(5.563±0.065) mg·g~(-1) for tenuifolin and(5.526±0.022) mg·g~(-1) for β-asarone; uniform and transparent pan-blue nanoemulsion can be formed after emulsification, with particle size of(28.84±0.44) nm. TEM showed that TF/ASA-SMEDDS can form spherical droplets with a uniform particle size after emulsification; In vitro release test results showed that the drug release rate and cumulative release of tenuifolin and β-asarone were significantly improved. The preparation process of TF/ASA-SMEDDS was simple and can effectively improve in vitro release of tenuifolin and β-asarone.


Subject(s)
Anisoles , Biological Availability , Diterpenes, Kaurane , Drug Delivery Systems , Emulsions , Particle Size , Solubility , Surface-Active Agents
SELECTION OF CITATIONS
SEARCH DETAIL