Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Article in English | WPRIM | ID: wpr-812547

ABSTRACT

Boiling processing is commonly used in post-harvest handling of White Paeony Root (WPR), in order to whiten the herbal materials and preserve the bright color, since such WPR is empirically considered to possess a higher quality. The present study was designed to investigate whether and how the boiling processing affects overall quality of WPR. First, an ultra-high performance liquid chromatography quadrupole/time-of-flight mass spectrometry-based metabolomics approach coupled with multivariate statistical analysis was developed to compare the holistic quality of boiled and un-boiled WPR samples. Second, ten major components in WPR samples boiled for different durations were quantitatively determined using high performance liquid chromatography to further explore the effects of boiling time on the holistic quality of WPR, meanwhile the appearance of the processed herbal materials was observed. The results suggested that the boiling processing conspicuously affected the holistic quality of WPR by simultaneously and inconsistently altering the chemical compositions and that short-time boiling processing between 2 and 10 min could both make the WPR bright-colored and improve the contents of major bioactive components, which were not achieved either without boiling or with prolonged boiling. In conclusion, short-term boiling (2-10 min) is recommended for post-harvest handling of WPR.


Subject(s)
Chromatography, High Pressure Liquid , Methods , Drugs, Chinese Herbal , Chemistry , Reference Standards , Hot Temperature , Mass Spectrometry , Methods , Paeonia , Chemistry , Plant Roots , Chemistry , Technology, Pharmaceutical , Water
2.
Article in English | WPRIM | ID: wpr-142098

ABSTRACT

An improved method to determine meloxicam (MEL) concentrations in koala plasma using reversed phase high performance liquid chromatography equipped with a photo diode array detector was developed and validated. A plasma sample clean-up step was carried out with hydrophilic-lipophilic copolymer solid phase extraction cartridges. MEL was separated from an endogenous interference using an isocratic mobile phase [acetonitrile and 50 mM potassium phosphate buffer (pH 2.15), 45:55 (v:v)] on a Nova-Pak C18 4-microm (300 x 3.9 mm) column. Retention times for MEL and piroxicam were 8.03 and 5.56 min, respectively. Peak area ratios of MEL to the internal standard (IS) were used for regression analysis of the calibration curve, which was linear from 10 to 1,000 ng/mL (r2 > 0.9998). Average absolute recovery rates were 91% and 96% for MEL and the IS, respectively. This method had sufficient sensitivity (lower quantitation limit of 10 ng/mL), precision, accuracy, and selectivity for routine analysis of MEL in koala plasma using 250-microL sample volumes. Our technique clearly resolved the MEL peak from the complex koala plasma matrix and accurately measured MEL concentrations in small plasma volumes.


Subject(s)
Animals , Anti-Inflammatory Agents, Non-Steroidal/blood , Chromatography, High Pressure Liquid/methods , Molecular Structure , Phascolarctidae/blood , Piroxicam/chemistry , Quality Control , Reproducibility of Results , Sensitivity and Specificity , Thiazines/blood , Thiazoles/blood
3.
Article in English | WPRIM | ID: wpr-142095

ABSTRACT

An improved method to determine meloxicam (MEL) concentrations in koala plasma using reversed phase high performance liquid chromatography equipped with a photo diode array detector was developed and validated. A plasma sample clean-up step was carried out with hydrophilic-lipophilic copolymer solid phase extraction cartridges. MEL was separated from an endogenous interference using an isocratic mobile phase [acetonitrile and 50 mM potassium phosphate buffer (pH 2.15), 45:55 (v:v)] on a Nova-Pak C18 4-microm (300 x 3.9 mm) column. Retention times for MEL and piroxicam were 8.03 and 5.56 min, respectively. Peak area ratios of MEL to the internal standard (IS) were used for regression analysis of the calibration curve, which was linear from 10 to 1,000 ng/mL (r2 > 0.9998). Average absolute recovery rates were 91% and 96% for MEL and the IS, respectively. This method had sufficient sensitivity (lower quantitation limit of 10 ng/mL), precision, accuracy, and selectivity for routine analysis of MEL in koala plasma using 250-microL sample volumes. Our technique clearly resolved the MEL peak from the complex koala plasma matrix and accurately measured MEL concentrations in small plasma volumes.


Subject(s)
Animals , Anti-Inflammatory Agents, Non-Steroidal/blood , Chromatography, High Pressure Liquid/methods , Molecular Structure , Phascolarctidae/blood , Piroxicam/chemistry , Quality Control , Reproducibility of Results , Sensitivity and Specificity , Thiazines/blood , Thiazoles/blood
SELECTION OF CITATIONS
SEARCH DETAIL