Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
1.
Article in English | WPRIM | ID: wpr-918221

ABSTRACT

Objective@#This study aimed to evaluate the image quality and dose reduction of low-dose three-dimensional (3D) rotational angiography (RA) for evaluating intracranial aneurysms. @*Materials and Methods@#We retrospectively evaluated the clinical data and 3D RA datasets obtained from 146 prospectively registered patients (male:female, 46:100; median age, 58 years; range, 19–81 years). The subjective image quality of 79 examinations obtained from a conventional method and 67 examinations obtained from a low-dose (5-seconds and 0.10-μGy/frame) method was assessed by two neurointerventionists using a 3-point scale for four evaluation criteria. The total image quality score was then obtained as the average of the four scores. The image quality scores were compared between the two methods using a noninferiority statistical testing, with a margin of -0.2 (i.e., score of low-dose group – score of conventional group). For the evaluation of dose reduction, dose-area product (DAP) and air kerma (AK) were analyzed and compared between the two groups. @*Results@#The mean total image quality score ± standard deviation of the 3D RA was 2.97 ± 0.17 by reader 1 and 2.95 ± 0.20 by reader 2 for conventional group and 2.92 ± 0.30 and 2.95 ± 0.22, respectively, for low-dose group. The image quality of the 3D RA in the low-dose group was not inferior to that of the conventional group according to the total image quality score as well as individual scores for the four criteria in both readers. The mean DAP and AK per rotation were 5.87 Gy-cm2 and 0.56 Gy, respectively, in the conventional group, and 1.32 Gy-cm2 (p < 0.001) and 0.17 Gy (p < 0.001), respectively, in the low-dose group. @*Conclusion@#Low-dose 3D RA was not inferior in image quality and reduced the radiation dose by 70%–77% compared to the conventional 3D RA in evaluating intracranial aneurysms.

2.
Neurointervention ; : 59-63, 2021.
Article in English | WPRIM | ID: wpr-875328

ABSTRACT

Purpose@#Three-dimensional (3D) measurement of intracranial aneurysms is important in planning endovascular treatment, and 3D rotational angiography (RA) is effective in accurate measurement. The purpose of this study was to evaluate the feasibility of low dose 3D RA (5 seconds 0.10 μGy/frame) in measuring an intracranial aneurysm using an in vitro phantom. @*Materials and Methods@#We investigated an in vitro 3D phantom of an intracranial aneurysm with 10 acquisitions of 3D RA with a conventional dose (5 seconds 0.36 μGy/frame) and 10 acquisitions with a low-dose (5 seconds 0.10 μGy/frame). 3D size and neck diameters of the aneurysm were measured and compared between the 2 groups (conventional and low-dose) using noninferiority statistics. @*Results@#The aneurysm measurements were well-correlated between the 2 readers, and noninferiority in the measurement of aneurysmal size of low-dose 3D RA was demonstrated, as the upper margin of the 1-sided 97.5% confidence interval did not cross the pre-defined noninferiority margin of 0.2 mm by the 2 readers. @*Conclusion@#Low-dose (5 seconds 0.10 μGy/frame) cerebral 3D RA is technically feasible and not inferior in in vitro 3D measurement of an intracranial aneurysm. Thus, low-dose 3D RA is promising and needs further evaluation for its clinical utility in the planning of endovascular treatment of an intracranial aneurysm.

3.
Article | WPRIM | ID: wpr-833675

ABSTRACT

Background@#and Purpose: Iron retained by activated microglia and macrophages in multiple sclerosis (MS) lesions may serve as a marker of innate immune system activation. Among several magnetic resonance imaging (MRI) methods, there has been recent interest in using quantitative susceptibility mapping (QSM) as a potential tool for assessing iron levels in the human brain. This study examined QSM findings in MS and neuromyelitis optica spectrum disorder (NMOSD) lesions obtained with 3-T MRI to assess imaging characteristics related to paramagnetic rims around brain lesions in MS and NMOSD. @*Methods@#This study included 32 MS and 21 seropositive NMOSD patients. MRI images were obtained using two 3-T MRI devices (Ingenia, Philips Healthcare; and Magnetom Verio, Siemens Healthineers) during routine diagnosis and treatment procedures. Multi and single echo gradient echo magnitude and phase images were obtained for QSM reconstruction.QSM images were used to characterize the detected lesions, and the findings were compared between MS and NMOSD. @*Results@#Totals of 71 and 35 MRI scans were performed during the study period in MS and NMOSD patients, respectively. In QSM images, paramagnetic rims were found in 26 (81.2%) MS patients and 1 (4.8%) NMOSD patient. Eight of the 22 MS patients and only 1 of the 10 NMOSD patients who underwent follow-up MRI showed new paramagnetic rims. The paramagnetic rim lesions appeared after enhancement or in new T2-weighted lesions without enhancement. @*Conclusions@#Paramagnetic rims might be a characteristic MRI finding for MS, and therefore they have potential as an imaging marker for differentially diagnosing MS from NMOSD using 3-T MRI.

4.
Article | WPRIM | ID: wpr-835531

ABSTRACT

Background@#Differentiation of cerebellopontine angle (CPA) schwannoma from meningioma is often a difficult process to identify.Purpose: To identify imaging features for distinguishing CPA schwannoma from meningioma and to investigate the usefulness of susceptibility-weighted imaging (SWI) in differentiating them. @*Materials and Methods@#Between March 2010 and January 2015, this study pathologically confirmed 11 meningiomas and 20 schwannomas involving CPA with preoperative SWI were retrospectively reviewed. Generally, the following MRI features were evaluated: 1) maximal diameter on axial image, 2) angle between tumor border and adjacent petrous bone, 3) presence of intratumoral dark signal intensity on SWI, 4) tumor consistency, 5) blood-fluid level, 6) involvement of internal auditory canal (IAC), 7) dural tail, and 8) involvement of adjacent intracranial space. On CT, 1) presence of dilatation of IAC, 2) intratumoral calcification, and 3) adjacent hyperostosis were evaluated. All features were compared using Chi-squared tests and Fisher’s exact tests. The univariate and multivariate logistic regression analysis were performed to identify imaging features that differentiate both tumors. @*Results@#The results noted that schwannomas more frequently demonstrated dark spots on SWI (P = 0.025), cystic consistency (P = 0.034), and globular angle (P = 0.008); schwannomas showed more dilatation of internal auditory meatus and lack of calcification (P = 0.008 and P = 0.02, respectively). However, it was shown that dural tail was more common in meningiomas (P < 0.007). In general, dark spots on SWI and dural tail remained significant in multivariate analysis (P = 0.037 and P = 0.012, respectively). In this case, the combination of two features showed a sensitivity and specificity of 80% and 100% respectively, with an area under the receiver operating characteristic curve of 0.9. @*Conclusion@#In conclusion, dark spots on SWI were found to be helpful in differentiating CPA schwannoma from meningioma. It is noted that combining dural tail with dark spots on SWI yielded strong diagnostic value in differentiating both tumors.

5.
Korean Journal of Radiology ; : 1138-1145, 2019.
Article in English | WPRIM | ID: wpr-760287

ABSTRACT

OBJECTIVE: To compare apparent diffusion coefficients (ADCs) of brain segments by using two diffusion-weighted imaging acquisition modes, single-shot echo-planar imaging (ss-EPI) and read-out-segmented echo-planar imaging (rs-EPI), and to assess their correlation and agreement in healthy controls. MATERIALS AND METHODS: T2-weighted (T2W) images, rs-EPI, and ss-EPI of 30 healthy subjects were acquired using a 3T magnetic resonance scanner. The T2W images were co-registered to the rs-EPI and ss-EPI, which were then segmented into the gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) to generate masking templates. ADC maps of rs-EPI and ss-EPI were also segmented into the GM, WM, and CSF by using the generated templates. ADCs of rs-EPI and ss-EPI were compared using Student's t tests and correlated using Pearson's correlation coefficients. Bland-Altman plots were used to assess the agreement between acquisitions.


Subject(s)
Brain , Cerebrospinal Fluid , Diffusion , Echo-Planar Imaging , Gray Matter , Healthy Volunteers , Magnetic Resonance Imaging , Masks , White Matter
6.
Article in English | WPRIM | ID: wpr-719586

ABSTRACT

OBJECTIVE: For localization of the motor cortex, seed-based resting-state functional MRI (rsfMRI) uses the contralateral motor cortex as a seed. However, research has shown that the location of the motor cortex could differ according to anatomical variations. The purpose of this study was to compare the results of rsfMRI using two seeds: a template seed (the anatomically expected location of the contralateral motor cortex) and a functional seed (the actual location of the contralateral motor cortex determined by task-based functional MRI [tbfMRI]). MATERIALS AND METHODS: Eight patients (4 with glioma, 3 with meningioma, and 1 with arteriovenous malformation) and 9 healthy volunteers participated. For the patients, tbfMRI was performed unilaterally to activate the healthy contralateral motor cortex. The affected ipsilateral motor cortices were mapped with rsfMRI using seed-based and independent component analysis (ICA). In the healthy volunteer group, both motor cortices were mapped with both-hands tbfMRI and rsfMRI. We compared the results between template and functional seeds, and between the seed-based analysis and ICA with visual and quantitative analysis. RESULTS: For the visual analysis, the functional seed showed significantly higher scores compared to the template seed in both the patients (p = 0.002) and healthy volunteers (p < 0.001). Although no significant difference was observed between the functional seed and ICA, the ICA results showed significantly higher scores than the template seed in both the patients (p = 0.01) and healthy volunteers (p = 0.005). In the quantitative analysis, the functional seed exhibited greater similarity to tbfMRI than the template seed and ICA. CONCLUSION: Using the contralateral motor cortex determined by tbfMRI as a seed could enhance visual delineation of the motor cortex in seed-based rsfMRI.


Subject(s)
Brain Mapping , Brain Neoplasms , Glioma , Healthy Volunteers , Humans , Magnetic Resonance Imaging , Meningioma , Motor Cortex
7.
Article in English | WPRIM | ID: wpr-741434

ABSTRACT

OBJECTIVE: A developmental venous anomaly (DVA) is a vascular malformation of ambiguous clinical significance. We aimed to quantify the susceptibility of draining veins (χvein) in DVA and determine its significance with respect to oxygen metabolism using quantitative susceptibility mapping (QSM). MATERIALS AND METHODS: Brain magnetic resonance imaging of 27 consecutive patients with incidentally detected DVAs were retrospectively reviewed. Based on the presence of abnormal hyperintensity on T2-weighted images (T2WI) in the brain parenchyma adjacent to DVA, the patients were grouped into edema (E+, n = 9) and non-edema (E−, n = 18) groups. A 3T MR scanner was used to obtain fully flow-compensated gradient echo images for susceptibility-weighted imaging with source images used for QSM processing. The χvein was measured semi-automatically using QSM. The normalized χvein was also estimated. Clinical and MR measurements were compared between the E+ and E− groups using Student's t-test or Mann-Whitney U test. Correlations between the χvein and area of hyperintensity on T2WI and between χvein and diameter of the collecting veins were assessed. The correlation coefficient was also calculated using normalized veins. RESULTS: The DVAs of the E+ group had significantly higher χvein (196.5 ± 27.9 vs. 167.7 ± 33.6, p = 0.036) and larger diameter of the draining veins (p = 0.006), and patients were older (p = 0.006) than those in the E− group. The χvein was also linearly correlated with the hyperintense area on T2WI (r = 0.633, 95% confidence interval 0.333–0.817, p < 0.001). CONCLUSION: DVAs with abnormal hyperintensity on T2WI have higher susceptibility values for draining veins, indicating an increased oxygen extraction fraction that might be associated with venous congestion.


Subject(s)
Brain , Edema , Humans , Hyperemia , Magnetic Resonance Imaging , Metabolism , Oxygen , Retrospective Studies , Vascular Malformations , Veins
8.
Article in English | WPRIM | ID: wpr-740145

ABSTRACT

PURPOSE: To assess associations between morphological characteristics of intracranial arteries in time-of-flight MR angiography (TOF-MRA) and atherosclerotic risk factors. MATERIALS AND METHODS: From January 2014 to October 2015, a total of 129 patients (65 men and 64 women) without intracranial arterial stenosis > 50% were included in this study. All MRIs were performed using a 3T machine with 3D TOF-MRA sequences. We evaluated irregularity, tortuosity, and dilatation of intracranial arteries in maximal intensity projection (MIP) of TOF-MRA. Subjects' risk factors for atherosclerosis including history of hypertension and diabetes were collected by reviewing their medical records. Associations between morphological characteristics and each known atherosclerosis risk factor were examined using univariate regression analysis. Multivariate regression models were built to determine combined association between those risk factors and morphologic changes of intracranial arteries. RESULTS: In multivariate analysis, hypertension (coefficient [95% CI]: 0.162 [0.036, 0.289], P = 0.012) and absence of diabetes (coefficient [95% CI]: −0.159 [−0.296, −0.023], P = 0.022) were associated with large diameter of intracranial arteries. Males (coefficient [95% CI]: 0.11 [−0.006, 0.23], P = 0.062) and higher age (coefficient [95% CI]: 0.003 [−0.001, 0.008], P = 0.138) had marginal association with increased diameter. Tortuosity was associated with old age (OR: 1.04 [1.02, 1.07], P < 0.001). Irregular contour of intracranial arteries was significantly associated with old age (OR: 1.05 [1.02, 1.09], P = 0.004), presence of diabetes (OR: 2.88 [1.36, 6.15], P = 0.0058), and previous ischemic stroke (OR: 3.91 [1.41, 11.16], P = 0.0092). CONCLUSION: Morphological characteristics (irregularity, tortuosity, dilatation) of intracranial arteries seen in TOF-MRA might be associated with atherosclerotic risk factors in subjects with no or mild stenosis.


Subject(s)
Angiography , Arteries , Atherosclerosis , Constriction, Pathologic , Dilatation , Humans , Hypertension , Magnetic Resonance Imaging , Male , Medical Records , Multivariate Analysis , Risk Factors , Stroke
9.
Article in English | WPRIM | ID: wpr-916603

ABSTRACT

PURPOSE@#To assess the added prognostic value of the morphologic characteristics of intracranial arteries in the risk modeling of a future non-cardioembolic stroke.@*MATERIALS AND METHODS@#This retrospective study included 86 patients without acute ischemic stroke who first underwent magnetic resonance imaging (MRI) including the time-of-flight magnetic resonance angiography (TOF-MRA) at 3T. Diffusion-weighted imaging (DWI) was performed for the follow-up imaging of these patients > 120 days after the initial MRI. The TOF-MRA result was used to analyze three morphological characteristics: dilatation, stenosis, and tortuosity. The presence of acute ischemic stroke was assessed using the follow-up DWI data. We built two prognostic models: model 1 includes the conventional stroke-risk factors, while model 2 includes the conventional risk factors and the morphologic characteristics of the intracranial arteries. We used the likelihood-ratio test to compare these two models. The models' performances were evaluated using Harrell's concordance index.@*RESULTS@#Fourteen patients suffered non-cardioembolic strokes. The performances of the two models differed significantly regarding the future-risk modeling of the non-cardioembolic stroke (p = 0.031). The Harrell's concordance index of model 2 (0.78 ± 0.05) exceeded that of model 1 (0.72 ± 0.07).@*CONCLUSION@#In addition to the conventional stroke-risk factors, the morphologic characteristics of the intracranial arteries were useful in the modeling of the future risk of the non-cardioembolic ischemic stroke.

10.
Article in English | WPRIM | ID: wpr-36759

ABSTRACT

OBJECTIVE: The purpose of this study was to compare the histogram analysis and visual scores in 3T MRI assessment of middle cerebral arterial wall enhancement in patients with acute stroke, for the differentiation of parent artery disease (PAD) from small artery disease (SAD). MATERIALS AND METHODS: Among the 82 consecutive patients in a tertiary hospital for one year, 25 patients with acute infarcts in middle cerebral artery (MCA) territory were included in this study including 15 patients with PAD and 10 patients with SAD. Three-dimensional contrast-enhanced T1-weighted turbo spin echo MR images with black-blood preparation at 3T were analyzed both qualitatively and quantitatively. The degree of MCA stenosis, and visual and histogram assessments on MCA wall enhancement were evaluated. A statistical analysis was performed to compare diagnostic accuracy between qualitative and quantitative metrics. RESULTS: The degree of stenosis, visual enhancement score, geometric mean (GM), and the 90th percentile (90P) value from the histogram analysis were significantly higher in PAD than in SAD (p = 0.006 for stenosis, < 0.001 for others). The receiver operating characteristic curve area of GM and 90P were 1 (95% confidence interval [CI], 0.86–1.00). CONCLUSION: A histogram analysis of a relevant arterial wall enhancement allows differentiation between PAD and SAD in patients with acute stroke within the MCA territory.


Subject(s)
Arteries , Constriction, Pathologic , Humans , Magnetic Resonance Imaging , Middle Cerebral Artery , Parents , ROC Curve , Stroke , Tertiary Care Centers
11.
Article in English | WPRIM | ID: wpr-6981

ABSTRACT

PURPOSE: The purpose of this study was to investigate the feasibility and survival benefits of combined treatment with radiotherapy and adjuvant temozolomide (TMZ) in a Korean sample. MATERIALS AND METHODS: A total of 750 Korean patients with histologically confirmed glioblastoma multiforme, who received concurrent chemoradiotherapy with TMZ (CCRT) and adjuvant TMZ from January 2006 until June 2011, were analyzed retrospectively. RESULTS: After the first operation, a gross total resection (GTR), subtotal resection (STR), partial resection (PR), biopsy alone were achieved in 388 (51.7%), 159 (21.2%), 96 (12.8%), and 107 (14.3%) patients, respectively. The methylation status of O6-methylguanine-DNA methyltransferase (MGMT) was reviewed retrospectively in 217 patients. The median follow-up period was 16.3 months and the median overall survival (OS) was 17.5 months. The actuarial survival rates at the 1-, 3-, and 5-year OS were 72.1%, 21.0%, and 9.0%, respectively. The median progression-free survival (PFS) was 10.1 months, and the actuarial PFS at 1-, 3-, and 5-year PFS were 42.2%, 13.0%, and 7.8%, respectively. The patients who received GTR showed a significantly longer OS and PFS than those who received STR, PR, or biopsy alone, regardless of the methylation status of the MGMT promoter. Patients with a methylated MGMT promoter also showed a significantly longer OS and PFS than those with an unmethylated MGMT promoter. Patients who received more than six cycles of adjuvant TMZ had a longer OS and PFS than those who received six or fewer cycles. Hematologic toxicity of grade 3 or 4 was observed in 8.4% of patients during the CCRT period and in 10.2% during the adjuvant TMZ period. CONCLUSION: Patients treated with CCRT followed by adjuvant TMZ had more favorable survival rates and tolerable toxicity than those who did not undergo this treatment.


Subject(s)
Biopsy , Chemoradiotherapy , Disease-Free Survival , Follow-Up Studies , Glioblastoma , Humans , Korea , Methylation , Radiotherapy , Retrospective Studies , Survival Rate
12.
Article in English | WPRIM | ID: wpr-82811

ABSTRACT

PURPOSE: To understand clinical significance of irregular interface between meningioma and adjacent brain parenchyma in predicting histological grading of tumor, focusing on brain parenchymal invasion. MATERIALS AND METHODS: Pathologically confirmed 79 cases with meningiomas with pathological reports about the presence of parenchymal invasion were included. We defined the presence of interface irregularity as either spiculations or fuzzy margins between the tumor and brain parenchyma. We counted number of spiculations and measured ratio of fuzzy margin length to whole length of mass with consensus of two neuroradiologists. We classified the patients into Present group and Absent group, and the two groups were compared by using the Mann-Whitney U test. Statistical correlations between the presence of an interface irregularity and brain parenchymal invasion by the tumor as well as meningioma histological grade were tested with chi-square test. The optimal cutoff values of spiculation numbers and the ratio of fuzzy margins were determined. The sensitivity and specificity of number of spiculations, ratio of fuzzy margin and the presence of irregular interface as combined parameters for predicting the parenchymal invasion were calculated using ROC curve analysis. RESULTS: Statistically significant differences were noted between the Present and Absent groups for number of spiculations and ratio of fuzzy margin (P = 0.038 and P = 0.028, respectively). The optimal cutoff value for number of spiculations (> 4.5 with 61.1% sensitivity and 68.9% specificity) and the ratio of fuzzy margin (> 0.24 with 66.7% sensitivity and 65.6% specificity) were determined. The sensitivity and specificity of interface irregularity as the combined parameters were 72% and 59%, respectively. The interface irregularity between tumor and brain parenchyma significantly correlated with not only brain parenchymal invasion (P = 0.001) and but also histological grade (P < 0.001). CONCLUSION: The interface irregularity between tumor and brain parenchyma in MRI can be a strong predictive factor for brain parenchymal invasion and high grade meningioma.


Subject(s)
Brain , Consensus , Humans , Magnetic Resonance Imaging , Meningioma , Pathology , ROC Curve , Sensitivity and Specificity
13.
Korean Journal of Radiology ; : 1353-1363, 2015.
Article in English | WPRIM | ID: wpr-172968

ABSTRACT

OBJECTIVE: To evaluate the image characteristics of subtraction magnetic resonance venography (SMRV) from time-resolved contrast-enhanced MR angiography (TRMRA) compared with phase-contrast MR venography (PCMRV) and single-phase contrast-enhanced MR venography (CEMRV). MATERIALS AND METHODS: Twenty-one patients who underwent brain MR venography (MRV) using standard protocols (PCMRV, CEMRV, and TRMRA) were included. SMRV was made by subtracting the arterial phase data from the venous phase data in TRMRA. Co-registration and subtraction of the two volume data was done using commercially available software. Image quality and the degree of arterial contamination of the three MRVs were compared. In the three MRVs, 19 pre-defined venous structures (14 dural sinuses and 5 cerebral veins) were evaluated. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of the three MRVs were also compared. RESULTS: Single-phase contrast-enhanced MR venography showed better image quality (median score 4 in both reviewers) than did the other two MRVs (p < 0.001), whereas SMRV (median score 3 in both reviewers) and PCMRV (median score 3 in both reviewers) had similar image quality (p ≥ 0.951). SMRV (median score 0 in both reviewers) suppressed arterial signal better than did the other MRVs (median score 1 in CEMRV, median score 2 in PCMRV, both reviewers) (p < 0.001). The dural sinus score of SMRV (median and interquartile range [IQR] 48, 43-50 for reviewer 1, 47, 43-49 for reviewer 2) was significantly higher than for PCMRV (median and IQR 31, 25-34 for reviewer 1, 30, 23-32 for reviewer 2) (p < 0.01) and did not differ from that of CEMRV (median and IQR 50, 47-52 for reviewer 1, 49, 45-51 for reviewer 2) (p = 0.146 in reviewer 1 and 0.123 in reviewer 2). The SNR and CNR of SMRV (median and IQR 104.5, 83.1-121.2 and 104.1, 74.9-120.5, respectively) were between those of CEMRV (median and IQR 150.3, 111-182.6 and 148.4, 108-178.2) and PCMRV (median and IQR 59.4, 49.2-74.9 and 53.6, 43.8-69.2). CONCLUSION: Subtraction magnetic resonance venography is a promising MRV method, with acceptable image quality and good arterial suppression.


Subject(s)
Adult , Aged , Cerebral Veins/diagnostic imaging , Cranial Sinuses/diagnostic imaging , Female , Humans , Magnetic Resonance Angiography/instrumentation , Male , Middle Aged , Signal-To-Noise Ratio
14.
Article in English | WPRIM | ID: wpr-184026

ABSTRACT

Based on the assumption that apparent diffusion coefficients (ADCs) define high-risk clinical target volume (aCTVHR) in high-grade glioma in a cellularity-dependent manner, the dosimetric effects of aCTVHR-targeted dose optimization were evaluated in two intensity-modulated radiation therapy (IMRT) plans. Diffusion-weighted magnetic resonance (MR) images and ADC maps were analyzed qualitatively and quantitatively to determine aCTVHR in a high-grade glioma with high cellularity. After confirming tumor malignancy using the average and minimum ADCs and ADC ratios, the aCTVHR with double- or triple-restricted water diffusion was defined on computed tomography images through image registration. Doses to the aCTVHR and CTV defined on T1-weighted MR images were optimized using a simultaneous integrated boost technique. The dosimetric benefits for CTVs and organs at risk (OARs) were compared using dose volume histograms and various biophysical indices in an ADC map-based IMRT (IMRTADC) plan and a conventional IMRT (IMRTconv) plan. The IMRTADC plan improved dose conformity up to 15 times, compared to the IMRTconv plan. It reduced the equivalent uniform doses in the visual system and brain stem by more than 10% and 16%, respectively. The ADC-based target differentiation and dose optimization may facilitate conformal dose distribution to the aCTVHR and OAR sparing in an IMRT plan.


Subject(s)
Contrast Media , Gadolinium , Glioma/radiotherapy , Humans , Magnetic Resonance Imaging/methods , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Tumor Burden
15.
Article in English | WPRIM | ID: wpr-150106

ABSTRACT

BACKGROUND AND PURPOSE: The "closing-in" phenomenon refers to the tendency to copy near or overlap a model while performing figure-copying tasks. The mechanisms underlying the closing-in phenomenon have not been fully elucidated, and previous studies only investigated the mechanisms through neuropsychological tests. We investigated the neuroanatomical correlates of the closing-in phenomenon using voxel-based morphometry (VBM). METHODS: Thirty-eight patients diagnosed with probable Alzheimer's disease (AD) and 21 normal controls were included. All subjects underwent neuropsychological testing to diagnose dementia and magnetization prepared rapid acquisition gradient echo brain magnetic resonance imaging for the voxel-based statistical analysis. The subjects were asked to copy the modified Luria's alternating squares and triangles to quantify the closing-in phenomenon. We applied SPM8 for the VBM analysis to detect gray matter loss associated with the closing-in phenomenon. RESULTS: The patients with probable AD showed a higher closing-in score than that of the normal control subjects (p<0.0001). The VBM analysis revealed more parietal and temporal atrophy in the patients with AD than that in the normal control group. Moreover, atrophy of the orbito-frontal area was associated with the closing-in phenomenon. CONCLUSIONS: The closing-in phenomenon is dysfunction while performing figure-copying tasks and is more common in patients with AD. The analysis of the orbito-frontal area, which is associated with inhibiting primitive reflexes, revealed that the closing-in phenomenon is an imitation behavior commonly observed in patients with frontal lobe damage.


Subject(s)
Alzheimer Disease , Atrophy , Brain , Dementia , Frontal Lobe , Humans , Magnetic Resonance Imaging , Neuropsychological Tests , Rabeprazole , Reflex
16.
Article in English | WPRIM | ID: wpr-66168

ABSTRACT

Subjective memory impairment (SMI) is now increasingly recognized as a risk factor of progression to dementia. This study investigated gray and white matter changes in the brains of SMI patients compared with normal controls and mild cognitive impairment (MCI) patients. We recruited 28 normal controls, 28 subjects with SMI, and 29 patients with MCI aged 60 or older. We analyzed gray and white matter changes using a voxel-based morphometry (VBM), hippocampal volumetry and regions of interest in diffusion tensor imaging (DTI). DTI parameters of corpus callosum and cingulum in SMI showed more white matter changes compared with those in normal controls, they were similar to those in MCI except in the hippocampus, which showed more degenerations in MCI. In VBM, SMI showed atrophy in the frontal, temporal, and parietal lobes compared with normal controls although it was not as extensive as that in MCI. Patients with SMI showed gray and white matter degenerations, the changes were distinct in white matter structures. SMI might be the first presenting symptom within the Alzheimer's disease continuum when combined with additional risk factors and neurodegenerative changes.


Subject(s)
Aged , Brain/pathology , Diagnosis, Differential , Diffusion Tensor Imaging/methods , Female , Gray Matter/pathology , Humans , Male , Memory Disorders/diagnosis , Cognitive Dysfunction/complications , Neurodegenerative Diseases/complications , Reference Values , Reproducibility of Results , Sensitivity and Specificity , White Matter/pathology
17.
Article in English | WPRIM | ID: wpr-71456

ABSTRACT

PURPOSE: Susceptibility weighted imaging (SWI) is a new magnetic resonance technique that can exploit the magnetic susceptibility differences of various tissues. Intracranial hemorrhage (ICH) looks a dark blooming on the magnitude images of SWI. However, the pattern of ICH on phase images is not well known. The purpose of this study is to characterize hemorrhagic lesions on the phase images of SWI. MATERIALS AND METHODS: We retrospectively enrolled patients with ICH, who underwent both SWI and precontrast CT, between 2012 and 2013 (n = 95). An SWI was taken, using the 3-tesla system. A phase map was generated after post-processing. Cases with an intracranial hemorrhage were reviewed by an experienced neuroradiologist and a trainee radiologist, with 10 years and 3 years of experience, respectively. The types and stages of the hemorrhages were determined in correlation with the precontrast CT, the T1- and T2-weighted images, and the FLAIR images. The size of the hemorrhage was measured by a one-directional axis on a magnitude image of SWI. The phase values of the ICH were qualitatively evaluated: hypo-, iso-, and hyper-intensity. We summarized the imaging features of the intracranial hemorrhage on the phase map of the SWI. RESULTS: Four types of hemorrhage are observed: subdural and epidural; subarachnoid; parenchymal hemorrhage; and microbleed. The stages of the ICH were classified into 4 groups: acute (n = 34); early subacute (n = 11); late subacute (n = 15); chronic (n = 8); stage-unknown microbleeds (n = 27). The acute and early subacute hemorrhage showed heterogeneous mixed hyper-, iso-, and hypo-signal intensity; the late subacute hemorrhage showed homogeneous hyper-intensity, and the chronic hemorrhage showed a shrunken iso-signal intensity with the hyper-signal rim. All acute subarachnoid hemorrhages showed a homogeneous hyper-signal intensity. All parenchymal hemorrhages (> 3 mm) showed a dipole artifact on the phase images; however, microbleeds of less than 3 mm showed no dipole artifact. Larger hematomas showed a heterogeneous mixture of hyper-, iso-, and hypo-signal intensities. CONCLUSION: The pattern of the phase value of the SWI showed difference, according to the type, stage, and size.


Subject(s)
Artifacts , Axis, Cervical Vertebra , Hematoma , Hemorrhage , Humans , Intracranial Hemorrhages , Magnetic Resonance Imaging , Retrospective Studies , Subarachnoid Hemorrhage
18.
Article in English | WPRIM | ID: wpr-228623

ABSTRACT

OBJECTIVE: To evaluate the efficacy of radiofrequency ablation (RFA) in the treatment of loco-regional, recurrent, and well-differentiated thyroid carcinoma. MATERIALS AND METHODS: Thirty-five recurrent well-differentiated thyroid carcinomas (RTC) in 32 patients were treated with RFA, between March 2008 and October 2011. RTCs were detected by regular follow-up ultrasound and confirmed by biopsy. All patients had fewer than 3 RTCs in the neck and were at high surgical risk or refused to undergo repeated surgery. Average number of RFA sessions were 1.3 (range 1-3). Post-RFA biopsy and ultrasound were performed. The mean follow-up period was 30 months. Pre- and post-RFA serum thyroglobulin values were evaluated. RESULTS: Thirty-one patients with 33 RTCs were treated with RFA only, whereas 1 patient with 2 RTCs was treated with RFA followed by surgery. At the last follow-up ultrasound, 31 (94%) of the 33 RTCs treated with RFA alone completely disappeared and the remaining 2 (6%) RTCs showed decreased volume. The largest diameter and volume of the 33 RTCs were markedly decreased by 93.2% (from 8.1 +/- 3.4 mm to 0.6 +/- 1.8 mm, p < 0.001) and 96.4% (from 173.9 +/- 198.7 mm3 to 6.2 +/- 27.9 mm3, p < 0.001), respectively. Twenty of the 21 RTCs evaluated with post-RFA biopsies (95%) were negative for malignancy. One (5%) showed remaining tumor that was removed surgically. The serum thyroglobulin was decreased in 19 of 26 patients (73%). Voice change developed immediately after RFA in 6 patients (19%) and was spontaneously recovered in 5 patients (83%). CONCLUSION: Radiofrequency ablation can be effective in treating loco-regional, recurrent, and well-differentiated thyroid carcinoma in patients at high surgical risk.


Subject(s)
Adult , Aged , Aged, 80 and over , Carcinoma/pathology , Catheter Ablation , Female , Follow-Up Studies , Humans , Male , Middle Aged , Neoplasm Recurrence, Local , Neoplasm Staging , Thyroglobulin/blood , Thyroid Neoplasms/pathology , Tomography, X-Ray Computed
19.
Article in English | WPRIM | ID: wpr-77847

ABSTRACT

PURPOSE: A relative increase in deoxyhemoglobin levels in hypoperfused tissue can cause prominent hypointense signals in the draining veins (PHSV) within areas of impaired perfusion in susceptibility-weighted imaging (SWI). The purpose of this study is to evaluate the usefulness of SWI in patients with acute cerebral infarction by evaluating PHSV within areas of impaired perfusion and to investigate the usefulness of PHSV in predicting prognosis of cerebral infarction. MATERIALS AND METHODS: In 18 patients with acute cerebral infarction who underwent brain MRI with diffusion-weighted imaging and SWI and follow-up brain MRI or CT, we reviewed the presence and location of the PHSV within and adjacent to areas of cerebral infarction qualitatively and measured the signal intensity difference ratio of PHSVs to contralateral normal appearing cortical veins quantitatively on SWI. The relationship between the presence of the PHSV and the change in the extent of infarction in follow-up images was analyzed. RESULTS: Of the 18 patients, 10 patients showed progression of the infarction, and 8 patients showed little change on follow-up imaging. On SWI, of the 10 patients with progression 9 patients showed peripheral PHSV and the newly developed infarctions corresponded well to area with peripheral PHSV on initial SWI. Only one patient without peripheral PHSV showed progression of the infarct. The patients with infarction progression revealed significantly higher presence of peripheral PHSV (p=0.0001) and higher mean signal intensity difference ratio (p=0.006) comparing to the patients with little change. CONCLUSION: SWI can demonstrate a peripheral PHSV as a marker of penumbra and with this finding we can predict the prognosis of acute infarction. The signal intensity difference of PHSV to brain tissue on SWI can be used in predicting prognosis of acute cerebral infarction.


Subject(s)
Brain , Cerebral Infarction , Follow-Up Studies , Humans , Infarction , Magnetic Resonance Imaging , Perfusion , Prognosis , Veins
20.
Article in English | WPRIM | ID: wpr-209687

ABSTRACT

Oculomotor cistern is normal anatomic structure that is like an arachnoid-lined cerebrospinal fluid-filled sleeve, containing oculomotor nerve. We report a case of arachnoid cyst in oculomotor cistern, manifesting as oculomotor nerve palsy. The oblique sagittal MRI, parallel to the oculomotor nerve, showed well-defined and enlarged subarachnoid spaces along the course of oculomotor nerve. Simple fenestration was done with immediate regression of symptom. When a disease develops in oculomotor cistern, precise evaluation with proper MRI sequence should be performed to rule out tumorous condition and prevent injury of the oculomotor nerve.


Subject(s)
Adult , Arachnoid Cysts/diagnosis , Female , Follow-Up Studies , Humans , Magnetic Resonance Imaging , Neurosurgical Procedures , Oculomotor Nerve/pathology , Oculomotor Nerve Diseases/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL