Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Language
Year range
1.
Braz. j. med. biol. res ; 54(10): e11207, 2021. tab, graf
Article in English | LILACS | ID: biblio-1285643

ABSTRACT

Reactive oxygen species (ROS) are involved in neuropathic pain, a complicated condition after nerve tissue lesion. Vitamin D appears to improve symptoms of pain and exhibits antioxidant properties. We investigated the effects of oral administration of vitamin D3, the active form of vitamin D, on nociception, the sciatic functional index (SFI), and spinal cord pro-oxidant and antioxidant markers in rats with chronic constriction injury (CCI) of the sciatic nerve, a model of neuropathic pain. Vitamin D3 (500 IU/kg per day) attenuated the CCI-induced decrease in mechanical withdrawal threshold and thermal withdrawal latency (indicators of antinociception) and SFI. The vitamin prevented increased lipid hydroperoxide levels in injured sciatic nerve without change to total antioxidant capacity (TAC). Vitamin D3 prevented increased lipid hydroperoxide, superoxide anion generation (SAG), and hydrogen peroxide (H2O2) levels in the spinal cord, which were found in rats without treatment at 7 and 28 days post-CCI. A significant negative correlation was found between mechanical threshold and SAG and between mechanical threshold and H2O2 at day 7. Vitamin D3 also prevented decreased spinal cord total thiols content. There was an increase in TAC in the spinal cord of vitamin-treated CCI rats, compared to CCI rats without treatment only at 28 days. No significant changes were found in body weight and blood parameters of hepatic and renal function. These findings demonstrated, for first time, that vitamin D modulated pro-oxidant and antioxidant markers in the spinal cord. Since antinociception occurred in parallel with oxidative changes in the spinal cord, the oxidative changes may have contributed to vitamin D-induced antinociception.


Subject(s)
Animals , Rats , Neuralgia/drug therapy , Antioxidants , Sciatic Nerve , Spinal Cord , Vitamin D , Vitamins , Reactive Oxygen Species , Rats, Wistar , Nociception , Hydrogen Peroxide , Hyperalgesia/drug therapy
2.
Braz. j. med. biol. res ; 53(6): e9237, 2020. tab, graf
Article in English | ColecionaSUS, LILACS, ColecionaSUS | ID: biblio-1132520

ABSTRACT

We investigated changes in oxidative biomarkers in brain regions such as brainstem, cerebellum, and cerebral cortex of 3-, 6-, 18-, 24-, and 30-month-old rats. We also assessed the effects of low-intensity exercise on these biomarkers in these regions of 6-, 18-, and 24-month-old rats that started exercise on a treadmill at 3, 15, and 21 months of age, respectively. Radiographic images of the femur were taken for all rats. A total of 25 rats (age: twelve 6-, ten 18-, ten 24-, and three 30-month-old rats) were used. Lipid hydroperoxide levels increased in cerebellum at 18 months. Total antioxidant activity exhibited lowest values in brainstem at 3 months. Superoxide dismutase activity did not exhibit significant changes during aging. Total thiol content exhibited lowest values in brain regions of 24- and 30-month-old rats. Exercise reduced total thiol content in brainstem at 6 months, but no change occurred in other regions and other ages. Femur increased its length and width and cortical thickness with advancing age. No change occurred in medullary width. Radiolucency increased and sclerosis was found in cortical and medullary bone with advancing age. Exercise reduced radiolucency and medullary sclerosis. Therefore, aging differentially changed oxidative biomarkers in different brain regions and radiographic measures of the femur. Low-intensity exercise only ameliorated some radiographic measurements of femur. Since the present study possessed limitations (small number of rats per group), a beneficial effect of regular low-intensity exercise on oxidative markers in brain cannot be ruled out.


Subject(s)
Animals , Male , Rats , Physical Conditioning, Animal/physiology , Brain/metabolism , Aging/physiology , Oxidative Stress/physiology , Femur/diagnostic imaging , Lipid Peroxides/analysis , Oxidation-Reduction , Aging/metabolism , Biomarkers/analysis , Lipid Peroxidation , Rats, Wistar , Femur/chemistry
3.
Braz. j. med. biol. res ; 52(7): e8429, 2019. graf
Article in English | LILACS | ID: biblio-1011597

ABSTRACT

The present study aimed to analyze age-related changes to motor coordination, balance, spinal cord oxidative biomarkers in 3-, 6-, 18-, 24-, and 30-month-old rats. The effects of low-intensity exercise on these parameters were also analyzed in 6-, 18-, and 24-month-old rats. Body weight, blood glucose, total cholesterol, and high-density lipoprotein (HDL) cholesterol were assessed for all rats. The soleus muscle weight/body weight ratio was used to estimate skeletal muscle mass loss. Body weight increased until 24 months; only 30-month-old rats exhibited decreased blood glucose and increased total cholesterol and HDL cholesterol. The soleus muscle weight/body weight ratio increased until 18 months, followed by a small decrease in old rats. Exercise did not change any of these parameters. Stride length and step length increased from adult to middle age, but decreased at old age. Stride width increased while the sciatic functional index decreased in old rats. Performance in the balance beam test declined with age. While gait did not change, balance improved after exercise. Aging increased superoxide anion generation, hydrogen peroxide levels, total antioxidant capacity, and superoxide dismutase activity while total thiol decreased and lipid hydroperoxides did not change. Exercise did not significantly change this scenario. Thus, aging increased oxidative stress in the spinal cord, which may be associated with age-induced changes in gait and balance. Regular low-intensity exercise is a good alternative for improving age-induced changes in balance, while beneficial effects on gait and spinal cord oxidative biomarkers cannot be ruled out because of the small number of rats investigated (n=5 or 6/group).


Subject(s)
Animals , Male , Rats , Physical Conditioning, Animal/physiology , Biomarkers/blood , Age Factors , Oxidative Stress/physiology , Postural Balance/physiology , Gait/physiology , Spinal Cord/physiology , Spinal Cord/metabolism , Blood Glucose/analysis , Body Weight/physiology , Biomarkers/metabolism , Cholesterol/blood , Rats, Wistar , Lipoproteins, HDL/blood
4.
Braz. j. biol ; 78(2): 217-223, May-Aug. 2018. graf
Article in English | LILACS | ID: biblio-888868

ABSTRACT

Abstract Sciatic nerve transection (SNT), a model for studying neuropathic pain, mimics the clinical symptoms of "phantom limb", a pain condition that arises in humans after amputation or transverse spinal lesions. In some vertebrate tissues, this condition decreases acetylcholinesterase (AChE) activity, the enzyme responsible for fast hydrolysis of released acetylcholine in cholinergic synapses. In spinal cord of frog Rana pipiens, this enzyme's activity was not significantly changed in the first days following ventral root transection, another model for studying neuropathic pain. An answerable question is whether SNT decreases AChE activity in spinal cord of frog Lithobates catesbeianus, a species that has been used as a model for studying SNT-induced neuropathic pain. Since each animal model has been created with a specific methodology, and the findings tend to vary widely with slight changes in the method used to induce pain, our study assessed AChE activity 3 and 10 days after complete SNT in lumbosacral spinal cord of adult male bullfrog Lithobates catesbeianus. Because there are time scale differences of motor endplate maturation in rat skeletal muscles, our study also measured the AChE activity in bullfrog tibial posticus (a postural muscle) and gastrocnemius (a typical skeletal muscle that is frequently used to study the motor system) muscles. AChE activity did not show significant changes 3 and 10 days following SNT in spinal cord. Also, no significant change occurred in AChE activity in tibial posticus and gastrocnemius muscles at day 3. However, a significant decrease was found at day 10, with reductions of 18% and 20% in tibial posticus and gastrocnemius, respectively. At present we cannot explain this change in AChE activity. While temporally different, the direction of the change was similar to that described for rats. This similarity indicates that bullfrog is a valid model for investigating AChE activity following SNT.


Resumo A transecção do nervo isquiático (SNT), um modelo para estudar dor neuropática, simula os sintomas clínicos do "membro fantasma", uma condição dolorosa que ocorre nos humanos após amputação ou secção completa da medula espinal. Essa condição muda a atividade da acetilcolinesterase (AChE), a enzima responsável pela rápida hidrólise da acetilcolina liberada nas sinapses colinérgicas, em alguns tecidos de vertebrados. Em medula espinal de rã Rana pipiens, a atividade da AChE não foi significativamente alterada nos primeiros dias após a secção da raiz ventral, outro modelo para o estudo da dor neuropática. Uma questão ainda não respondida é se a SNT diminui a atividade da AChE na medula espinal de rã Lithobates catesbeianus, uma espécie que vem sendo usada como modelo em estudos da dor neuropática induzida por SNT. Como cada modelo animal é criado a partir de metodologia específica, e seus resultados tendem a variar com pequenas mudanças na metodologia de indução da dor, o presente estudo avaliou a atividade da AChE em medula espinal lombossacral de rã-touro Lithobates catesbeianus, adultos, machos, 3 e 10 dias após a completa SNT. Como há diferenças temporais na maturação de placas motoras em músculos esqueléticos de ratos, nosso estudo ainda demonstrou, na rã-touro, os efeitos da SNT sobre a atividade da AChE nos músculos esqueléticos tibial posticus, um músculo postural, e gastrocnêmio, um músculo frequentemente usado em estudos do sistema motor. A atividade da AChE não mudou significativamente na medula espinal aos 3 e 10 dias após a SNT. Nos músculos, a atividade não alterou significativamente aos 3 dias após a lesão, mas reduziu de forma significativa aos 10 dias após a SNT. Aos 10 dias, a diminuição foi 18% no músculo tibial posticus e 20% no gastrocnêmio. No momento, nós não temos explicação para essa mudança na atividade da AChE. Embora temporalmente diferente, o sentido da mudança é similar ao que é descrito em ratos. Esta similaridade torna a rã-touro um modelo válido para se estudar questões ainda não respondidas da SNT sobre a AChE.


Subject(s)
Animals , Acetylcholinesterase/metabolism , Sciatic Nerve/enzymology , Sciatic Nerve/physiopathology , Sciatic Nerve/injuries , Spinal Cord/physiology , Muscle, Skeletal/innervation , Rana catesbeiana
SELECTION OF CITATIONS
SEARCH DETAIL