Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Article in Chinese | WPRIM | ID: wpr-879850

ABSTRACT

OBJECTIVE@#To study the effect of different melatonin treatment regimens on long-term behavior and white matter damage in neonatal rats with hypoxic-ischemic brain damage (HIBD), and to seek an optimal melatonin treatment regimen.@*METHODS@#Healthy Sprague-Dawley rats, aged 7 days, were randomly divided into four groups: sham-operation, HIBD, single-dose immediate treatment (SDIT), and 7-day continuous treatment (7DCT), with 8 rats in each group. A neonatal rat model of HIBD was prepared according to the classical Rice-Vannucci method. On day 21 after HIBD, the Morris water maze test was used to evaluate spatial learning and memory abilities. On day 70 after HIBD, immunofluorescence assay was used to measure the expression of neuronal nuclear antigen (NeuN) in the cerebral cortex and the hippocampal CA1 region of neonatal rats, and double-label immunofluorescence was used to measure the expression of myelin basic protein (MBP) and neurofilament 200 (NF200) in the corpus striatum and the corpus callosum.@*RESULTS@#The results of the Morris water maze test showed that the SDIT and 7DCT groups had a significantly shorter mean escape latency than the HIBD group, and the 7DCT group had a significantly shorter mean escape latency than the SDIT group (@*CONCLUSIONS@#Both SDIT and 7DCT can improve long-term behavior and reduce white matter damage in neonatal rats with HIBD, and 7DCT is more effective than SDIT.


Subject(s)
Animals , Animals, Newborn , Hypoxia-Ischemia, Brain/drug therapy , Melatonin/pharmacology , Rats , Rats, Sprague-Dawley , White Matter
2.
Article in Chinese | WPRIM | ID: wpr-775098

ABSTRACT

OBJECTIVE@#To study the effects of different melatonin treatment regimens on the proliferation of neural stem cells (NSCs) and long-term histopathology in neonatal rats with hypoxic-ischemic brain damage (HIBD), and to identify better melatonin treatment regimens.@*METHODS@#A total of 96 Sprague-Dawley rats aged 7 days were randomly divided into normal control, HIBD, single-dose immediate melatonin treatment (SDIT), and 7-day continuous melatonin treatment (7DCT) groups, with 24 rats in each group. The rat model of HIBD was prepared by isolation and electrocoagulation of the right common carotid artery as well as hypoxic treatment in a hypoxic chamber (oxygen concentration 8.00% ± 0.01%) for 2 hours. On day 7 after modeling, proliferating cell nuclear antigen/Nestin double-labeling immunofluorescence was used to measure the proliferation of endogenous NSCs in the subventricular zone (SVZ) and the hippocampal dentate gyrus (DG) region in 8 rats in each group, and Western blot was used to measure the protein expression of Nestin in brain. On day 28 after modeling, hematoxylin-eosin (HE) staining and Nissl staining were used to observe the changes in the histopathology and the number of pyramidal cells in the hippocampal CA1 region in 8 rats in each group.@*RESULTS@#Immunofluorescent staining showed that compared with the HIBD group, the SDIT and 7DCT groups had a significant increase in the number of PCNA+Nestin+DAPI+ cells, and the 7DCT group had a significantly higher number than the SDIT group (P<0.01). Western blot showed that the SDIT and 7DCT groups had significantly higher protein expression of Nestin than the HIBD group, and the 7DCT group had significantly higher expression than the SDIT group (P<0.05). HE staining showed that the SDIT and 7DCT groups had alleviated cell injury, and Nissl staining showed that compared with the HIBD group, the SDIT and 7DCT groups had a significant increase in the number of pyramidal cells, and the 7DCT group had a significantly higher number than the SDIT group (P<0.01).@*CONCLUSIONS@#Both single-dose immediate melatonin treatment and 7-day continuous melatonin treatment can promote the proliferation of endogenous NSCs and alleviate long-term histological injury in the brain of neonatal rats with HIBD. A 7-day continuous melatonin treatment has a better effect than single-dose immediate melatonin treatment.


Subject(s)
Animals , Animals, Newborn , Brain , Cell Proliferation , Hypoxia-Ischemia, Brain , Melatonin , Neural Stem Cells , Neurons , Rats , Rats, Sprague-Dawley
3.
Article in Chinese | WPRIM | ID: wpr-300421

ABSTRACT

<p><b>OBJECTIVE</b>To explore the effects of rat bone mesenchymal stem cell (BMSC) transplantation on retinal neovascularization, and to observe the changes of hypoxia-inducible factor-1 alpha (HIF-1α) and vascular endothelial growth factors (VEGF) in rats with oxygen-induced retinopathy (OIR).</p><p><b>METHODS</b>Seventy-two seven-day-old Sprague-Dawley rats were randomly divided into three groups: normal control (CON), model (OIR) and BMSC transplantation. In the BMSC transplantation group, BMSCs were transplanted 5 days after oxygen conditioning. The phosphate buffered saline of the same volume was injected in the CON and OIR groups. The OIR model was prerpared according to the classic hyperoxygen method. At seven days after transplantation, retinal neovascularization was examined by retinal flat-mount staining and hematoxylin eosin (HE) staining. The expression of HIF-1α and VEGF proteins was examined by immunohistochemistry staining and Western blot analysis.</p><p><b>RESULTS</b>The retinal flat-mount staining results showed that the vessels were well organized in the CON group, but the vessels were irregularly organized, and lots of nonperfusion areas were observed in the OIR group. The large vessels were a bit circuitous, the retinal vessels were relatively organized, and less nonperfusion areas were noted in the BMSC transplantation group. The HE staining results showed that many neovessels and preretinal neovascular (pre-RNC) cells were observed on the internal limiting membrane in the OIR group. There were less pre-RNC cells in the BMSC transplantation group compared with the OIR group (P<0.01). The immunohistochemistry analysis showed that more HIF-1αand VEGFcells were observed in the OIR group compared with the CON group, and less HIF-1αand VEGFcells were observed in the BMSC transplantation group compared with OIR group (P<0.05). The Western blot analysis showed the expression of HIF-1α and VEGF proteins in the OIR group was significantly higher than that in the CON group. The expression of HIF-1α and VEGF proteins in the BMSC transplantation group was lower than that in the OIR group (P<0.01).</p><p><b>CONCLUSIONS</b>BMSC transplantation therapy could alleviate retinal neovascularization in OIR rats, and its mechanisms might be associated with the inhibition of the expression of HIF-1α and VEGF proteins.</p>


Subject(s)
Animals , Animals, Newborn , Female , Hypoxia-Inducible Factor 1, alpha Subunit , Male , Mesenchymal Stem Cell Transplantation , Rats , Rats, Sprague-Dawley , Retina , Chemistry , Retinal Neovascularization , Retinopathy of Prematurity , Metabolism , Therapeutics , Vascular Endothelial Growth Factor A
SELECTION OF CITATIONS
SEARCH DETAIL