ABSTRACT
The study aimed to explore the effects of inoculation of Rhizophagus intraradices on the biomass, effective component content, and endogenous hormone content of Salvia miltiorrhiza through pot experiments. The number of leaves, plant height, dry weight of aboveground and underground parts, branch number, root number, root length, root diameter, and other biomass were mea-sured by weighing and counting methods. The content of salvianolic acid B, caffeic acid, rosmarinic acid, tanshinone Ⅰ, tanshinone Ⅱ_A, cryptotanshinone, and other effective components was determined by ultra-high performance liquid chromatography. The content of ABA and GA_3 was determined by triple quadrupole mass spectrometry. The correlations between biomass and effective components and between effective components and plant hormones ABA and GA_3 were analyzed. The results showed that R. intraradices significan-tly increased the aboveground dry weight, leaf number, and root number of S. miltiorrhiza by 0.24-0.65 times, respectively. The content of salvianolic acid B and rosmarinic acid in the aboveground part and the content of salvianolic acid B, caffeic acid, rosmarinic acid, tanshinone Ⅰ, and tanshinone Ⅱ_A in the underground part were significantly increased by 0.44-1.78 times, respectively. R. intraradices infection significantly increased the GA_3/ABA values of aboveground and underground parts by 3.82 and 76.47 times, respectively. The correlation analysis showed that caffeic acid, the effective component of the aboveground part, was significantly positively correlated with plant height, tanshinone Ⅱ_A, the effective component of the underground part, was significantly positively correlated with biomass root number, cryptotanshinone, and dry weight, while rosmarinic acid was significantly negatively correlated with dry weight. There were significant positive correlations between cryptotanshinone and ABA, tanshinone Ⅱ_A and ABA and GA_3, and caffeic acid and GA_3. In conclusion, R. intraradices can promote the accumulation of biomass and secondary metabolites of S. miltiorrhiza and regulate the balance between plant hormones ABA and GA_3, thereby promoting the growth of S. miltiorrhiza.
Subject(s)
Salvia miltiorrhiza/chemistry , Plant Growth Regulators/analysis , Plant Roots/chemistryABSTRACT
Lilii Bulbus is a commonly used Chinese herbal medicine with both medicinal and edible values, while the market products usually has the problem of sulfur fumigation. Therefore, the quality and safety of Lilii Bulbus products deserve attention. In this study, ultra-high performance liquid chromatography-time of flight-tandem mass spectrometry(UPLC-Q-TOF-MS/MS) was combined with principal component analysis(PCA) and orthogonal partial least squares discriminant analysis(OPLS-DA) to analyze the differential components of Lilii Bulbus before and after sulfur fumigation. We identified ten markers generated after sulfur fumigation, summarized their mass fragmentation and transformation patterns, and verified the structures of phenylacrylic acid markers of sulfur fumigation. At the same time, the cytotoxicity of the aqueous extracts of Lilii Bulbus before and after sulfur fumigation was evaluated. The results showed that in the concentration range of 0-800 mg·L~(-1), the aqueous extract of Lilii Bulbus after sulfur fumigation had no significant effect on the viability of human liver LO2 cells, human renal proximal tubular HK-2 cells, and rat adrenal pheochromocytoma PC-12 cells. Moreover, the viability of the cells exposed to the aqueous extract of Lilii Bulbus before and after sulfur fumigation showed no significant difference. This study identified phenylacrylic acid and furostanol saponins as markers of sulfur-fumigated Lilii Bulbus for the first time, and made clear that proper sulfur fumigation of Lilii Bulbus would not produce cytotoxicity, providing a theoretical basis for the rapid identification and quality and safety control of sulfur-fumigated Lilii Bulbus.
Subject(s)
Humans , Animals , Rats , Fumigation , Tandem Mass Spectrometry , Chromatography, High Pressure Liquid , Epithelial Cells , SulfurABSTRACT
Codonopsis Radix is a traditional tonic medicine commonly used in China, which has the effects of strengthening the spleen and tonifying the lung, as well as nourishing blood and engendering liquid. The chemical constituents of Codonopsis species are mainly polyacetylenes, alkaloids, phenylpropanoids, lignans, terpenoids and saponins, flavonoids, steroids, organic acids, saccharides, and so on. Modern pharmacological studies showed that Codonopsis Radix also has a variety of pharmacological effects such as enhancing body immunity, protecting gastrointestinal mucosa and resisting ulcers, promoting hematopoietic function, regulating blood sugar, and delaying aging. In this paper, the chemical constituents of Codonopsis species and the pharmacological effects of Codonopsis Radix were summarized, and on this basis, the quality markers of Codonopsis Radix were analyzed. It was predicted that lobetyolin, tangshenoside I, codonopyrrolidium A, and the oligosaccharides were the possible Q-markers of Codonopsis Radix. This paper will provide scientific references for the quality evaluation and profound research and the development of Codonopsis Radix.
Subject(s)
Drugs, Chinese Herbal , Codonopsis , Alkaloids , Medicine, Traditional , Plant RootsABSTRACT
Starting with the relationship between mulberry leaves and silkworm droppings as food and metabolites, this study systematically compared the chemical components, screened out differential components, and quantitatively analyzed the main differential components based on ultra-high performance liquid chromatography with quadrupole time-of-flight mass spectrometry(UPLC-Q-TOF-MS) and UPLC-Q-TRAP-MS combined with principal component analysis(PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA). Moreover, the in vitro enzymatic transformation of the representative differential components was studied. The results showed that(1) 95 components were identified from mulberry leaves and silkworm droppings, among which 27 components only exist in mulberry leaves and 8 components in silkworm droppings. The main differential components were flavonoid glycosides and chlorogenic acids.(2) Nineteen components with significant difference were quantitatively analyzed, and the components with significant differences and high content were neochlorogenic acid, chlorogenic acid, and rutin.(3) The crude protease in the mid-gut of silkworm significantly metabolized neochlorogenic acid and chlorogenic acid, which may be an important reason for the efficacy change in mulberry leaves and silkworm droppings. This study lays a scientific foundation for the development, utilization, and quality control of mulberry leaves and silkworm droppings. It provides references for clarifying the possible material basis and mechanism of the pungent-cool and dispersing nature of mulberry leaves transforming into the pungent-warm and dampness-resolving nature of silkworm droppings, and offers a new idea for the study of nature-effect transformation mechanism of traditional Chinese medicine.
Subject(s)
Animals , Bombyx , Morus/chemistry , Chlorogenic Acid/analysis , Gas Chromatography-Mass Spectrometry , Chromatography, High Pressure Liquid/methods , Plant Leaves/chemistryABSTRACT
Zearalenone(ZEN) is a toxic metabolite produced by Fusarium culmorum, F. graminearum, F. tricinctum, and other fungi, with estrogenic characteristics. Exposure to or ingestion of ZEN during pregnancy can cause reproductive dysfunction, miscarriage, stillbirth, and malformation, and seriously endanger human life and health. The detection methods for ZEN in the Chinese Pharmacopoeia(2020 edition) are liquid chromatography(LC) and liquid chromatography-mass spectrometry(LC-MS), and it is stipulated that ZEN should not exceed 500 μg in 1 000 g of Coicis Semen. Although these detection methods by instruments can achieve the qualitative and quantitative analysis of ZEN in Coicis Semen, their high detection cost and long periods hinder the rapid screening of a large number of samples in the field. In this study, the synthesized ZEN hapten was conjugated with bovine serum albumin(BSA) and ovalbumin(OVA) to obtain the complete ZEN antigen. By virtue of antibody preparation techniques, ZEN monoclonal antibody 4F6 was prepared, which showed 177.5%, 137.1%, and 109.7% cross-reactivity with ZEN structural analogs zearalanol, zearalenone, and α-zearalenol, respectively, and no cross-reactivity with other fungal toxins such as aflatoxin. Direct competitive enzyme-linked immunosorbent assay(dcELISA) based on ZEN monoclonal antibody 4F6 was developed for the determination of ZEN in Coicis Semen with an IC_(50) of 1.3 μg·L~(-1) and a detection range of 0.22-21.92 μg·L~(-1). The recoveries were 83.91%-105.3% and the RSD was 4.4%-8.0%. The established dcELISA method was used to determine the ZEN residuals in nine batches of Coicis Semen samples, and the results were validated by LC-MS. The correlation between the two detection methods was found to be 0.993 9, indicating that the established dcELISA could be used for the rapid qualitative and quantitative detection of ZEN residuals in Coicis Semen.
Subject(s)
Humans , Female , Pregnancy , Zearalenone , Coix , Enzyme-Linked Immunosorbent Assay , Mycotoxins , Antibodies, MonoclonalABSTRACT
The quality of moxa is an important factor affecting moxibustion therapy, and traditionally, 3-year moxa is considered optimal, although scientific data are lacking. This study focused on 1-year and 3-year moxa from Artemisia stolonifera and A. argyi(leaf-to-moxa ratio of 10∶1) as research objects. Scanning electron microscopy(SEM), Van Soest method, and simultaneous thermal analysis were used to investigate the differences in the combustion heat quality of 1-year and 3-year moxa and their influencing factors. The results showed that the combustion of A. stolonifera moxa exhibited a balanced heat release pattern. The 3-year moxa released a concentrated heat of 9 998.84 mJ·mg~(-1)(accounting for 54% of the total heat release) in the temperature range of 140-302 ℃, with a heat production efficiency of 122 mW·mg~(-1). It further released 7 512.51 mJ·mg~(-1)(accounting for 41% of the total heat release) in the temperature range of 302-519 ℃. The combustion of A. argyi moxa showed a rapid heat release pattern. The 3-year moxa released a heat of 16 695.28 mJ·mg~(-1)(accounting for 70% of the total heat release) in the temperature range of 140-311 ℃, with an instantaneous power output of 218 mW·mg~(-1). It further released 5 996.95 mJ·mg~(-1)(accounting for 25% of the total heat release) in the temperature range of 311-483 ℃. Combustion parameters such as-R_p,-R_v, D_i, C, and D_b indicated that the combustion heat quality of 3-year moxa was superior to that of 1-year moxa. It exhibited greater combustion heat, heat production efficiency, flammability, mild and sustained burning, and higher instantaneous combustion efficiency. This study utilized scientific data to demonstrate that A. stolonifera could be used as excellent moxa, and the quality of 3-year moxa surpassed that of 1-year moxa. The research results provide a scientific basis for the in-depth development of A. stolonifera moxa and the improvement of moxa quality standards.
Subject(s)
Artemisia , Hot Temperature , Moxibustion , Plant LeavesABSTRACT
This study aimed to explore the anti-inflammatory material basis and molecular mechanism of Artemisia stolonifera based on the analysis of the chemical components in different extracted fractions of A. stolonifera and their antioxidant and anti-inflammatory effects in combination with network pharmacology and molecular docking. Thirty-two chemical components were identified from A. stolonifera by ultra-performance liquid chromatography coupled to tandem quadrupole time-of-flight mass spectrometry(UPLC-Q-TOF-MS). Among them, there were 7, 21 and 22 compounds in water, n-butanol and ethyl acetate fractions, respectively. The antio-xidant capacity of different extracted fractions was evaluated by measuring their scavenging ability against 1,1-diphenyl-2-picrylhydrazyl radical 2,2-diphenyl-1-(2,4,6-trinitrophenyl) hydrazyl(DPPH) and 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulphonic acid)(ABTS) free radicals and total antioxidant capacity [ferric reducing antioxidant power(FRAP) assay]. The inflammatory model of RAW264.7 cells was induced by lipopolysaccharide(LPS), and the levels of nitrite oxide(NO), tumor necrosis factor-α(TNF-α), interleukin-6(IL-6) in the supernatant and the mRNA expression of related inflammatory factors in cells were used to evaluate the anti-inflammatory effects. The results revealed that ethyl acetate fraction of A. stolonifera was the optimal antioxidant and anti-inflammatory fraction. By network pharmacology, it was found that flavonoids such as rhamnazin, eupatilin, jaceosidin, luteolin and nepetin could act on key targets such as TNF, serine/threonine protein kinase 1(AKT1), tumor protein p53(TP53), caspase-3(CASP3) and epidermal growth factor receptor(EGFR), and regulate the phosphatidylinositol-3-kinase-protein kinase B(PI3K-AKT) and mitogen-activated protein kinase(MAPK) signaling pathways to exert the anti-inflammatory effects. Molecular docking further indicated excellent binding properties between the above core components and core targets. This study preliminarily clarified the anti-inflammatory material basis and mechanism of ethyl acetate fraction of A. stolonifera, providing a basis for the follow-up clinical application of A. stolonifera and drug development.
Subject(s)
Antioxidants/chemistry , Molecular Docking Simulation , Artemisia , Network Pharmacology , Phosphatidylinositol 3-Kinases , Anti-Inflammatory Agents/chemistry , Drugs, Chinese Herbal/pharmacology , Interleukin-6ABSTRACT
This study aimed to characterize and identify the non-volatile components in Pogostemonis Herba by using ultra-perfor-mance liquid chromatography-quadrupole-time of flight-mass spectrometry(UPLC-Q-TOF-MS) combined with UNIFI and an in-house library. The chemical components in 50% methanol extract of Pogostemonis Herba were detected by UPLC-Q-TOF-MS in both positive and negative MS~E continuum modes. Then, the MS data were processed in UNIFI combined with an in-house library to automatically characterize the metabolites. Based on the multiple adduct ions, exact mass, diagnostic fragment ions, and peak intensity of compounds and the fragmentation pathways and retention behaviors of reference substances, the structures identified by UNIFI were further verified and those of the unidentified compounds were tentatively elucidated. A total of 120 compound structures were identified or tentatively identified, including flavonoids, phenylpropanoids, phenolic acids, terpenes, fatty acids, alkaloids, and phenylethanoid glycosides. Sixteen of them were accurately identified by comparison with reference substances, and 53 compounds were reported the first time for Pogostemonis Herba. This study systematically characterized and identified the non-volatile compounds in Pogostemonis Herba for the first time. The findings provide a scientific basis for revealing the pharmacodynamic material basis, establishing a quality control system, and developing products of Pogostemonis Herba.
ABSTRACT
Dead heart is an important trait of pith-decayed Scutellariae Radix. The purpose of this study was to clarify the scientific connotation of the dead heart using multi-omics. Metabolomics and transcriptomics combined with multivariate statistical analysis such as principal component analysis(PCA) and partial least squares discriminant analysis(PLS-DA) were used to systematically compare the differences in chemical composition and gene expression among phloem, outer xylem and near-dead xylem of pith-decayed Scutella-riae Radix. The results revealed significant differences in the contents of flavonoid glycosides and aglycones among the three parts. Compared with phloem and outer xylem, near-dead xylem had markedly lowered content of flavonoid glycosides(including baicalin, norwogonin-7-O-β-D-glucuronide, oroxylin A-7-O-β-D-glucuronide, and wogonoside) while markedly increased content of aglycones(including 3,5,7,2',6'-pentahydroxy dihydroflavone, baicalin, wogonin, and oroxylin A). The differentially expressed genes were mainly concentrated in KEGG pathways such as phenylpropanoid metabolism, flavonoid biosynthesis, ABC transporter, and plant MAPK signal transduction pathway. This study systematically elucidated the material basis of the dead heart of pith-decayed Scutellariae Radix with multiple growing years. Specifically, the content of flavonoid aglycones was significantly increased in the near-dead xylem, and the gene expression of metabolic pathways such as flavonoid glycoside hydrolysis, interxylary cork development and programmed apoptosis was significantly up-regulated. This study provided a theoretical basis for guiding the high-quality production of pith-decayed Scutellariae Radix.
Subject(s)
Drugs, Chinese Herbal/chemistry , Scutellaria baicalensis/chemistry , Glucuronides , Multiomics , Flavonoids/chemistryABSTRACT
The quality of moxa is a key factor affecting the efficacy of moxibustion. Traditional moxa grades are evaluated by the leaf-to-moxa ratio, but there is a lack of support from scientific data. Scanning electron microscopy(SEM), Image Pro Plus, Van Soest method, and stimultaneous thermal analysis(TGA/DSC) were used to characterize the scientific implication of the combustion differences between moxa with different leaf-to-moxa ratios(processed by crusher). The results showed that the median lengths from non-secretory trichomes(NSTs) of natural NSTs and moxa with leaf-to-moxa ratios of 3∶1, 5∶1, 10∶1, and 15∶1 were 542.46, 303.24, 291.18, 220.69, and 170.61 μm, respectively. The cellulose content of moxa increased significantly(P<0.05) with the increase in leaf-to-moxa ratio and the combustion parameters(T_i, t_i, D_i, C,-R_p,-R_v, S, D_b, and J_(total)) all showed an increasing trend. The correlation results showed that the burning properties of moxa(T_i,-R_v, t_i, and J_2) were significantly and positively correlated with cellulose content. NSTs with a length of 1-200 μm were significantly and positively correlated with J_2. NSTs with a length of 200-600 μm were significantly and positively correlated with J_1, T_(peak2), T_(peak1), and-R_v, and negatively correlated with J_(total), T_b, and t_b. As the leaf-to-moxa ratio increases, the NSTs in the moxa become shorter and the cellulose content increases, which is more conducive to ignition performance, heat release, and a milder, longer-lasting burn. The "NSTs-cellulose-TGA/DSC" quantitative evaluation method scientifically reveals the scientific connotation of the combustion of moxa with different leaf-to-moxa ratios and provides a scientific basis for the establishment of quality evaluation methods for moxa with different leaf-to-moxa ratios.
Subject(s)
Trichomes , Moxibustion , Hot Temperature , Plant LeavesABSTRACT
Moutan Cortex(MC) residues produced after the extraction of MC can be re-extracted for active components and used to produce organic fertilizer and animal feed. However, they are currently disposed as domestic waste, which pollutes the environment. This study analyzed the chemical composition of the medicinal material, residues, and residue compost of MC by UPLC-UV-Q-TOF-MS. Furthermore, the nutrient composition of MC residues and the residue compost was analyzed. The results showed that:(1)MC residues had lower content of chemicals than the medicinal material, and content of paeonol, gallic acid, and galloylglucose in MC residues were about 1/3 of that in the medicinal material. The content of chemicals were further reduced after residue composting, and the quantitative compounds were all below the limits of detection.(2)Compared with MC residues, the residue compost showed the total nitrogen, total phosphorus, total potassium, and organic matter content increasing by 122.67%, 31.32%, 120.39%, and 32.06%, respectively. Therefore, we concluded that the MC residues can be used to re-extract active compounds such as paeonol, gallic acid, and galloylglucose. The MC residue compost is a high-quality organic fertilizer containing minimal content of chemicals and can be widely used in the cultivation of Chinese medicinal herbs.
Subject(s)
Animals , Composting , Fertilizers , Soil/chemistry , Hydrolyzable Tannins , Nutrients , Acetophenones , Drugs, Chinese Herbal , PaeoniaABSTRACT
Objective:To investigate the differences of main components of prepared Morindae Officinalis Radix,Morindae Officinalis Radix processed with steaming and salt. Method:A total of 83 batches samples were collected in the market, including 41 batches of prepared Morindae Officinalis Radix,32 batches of Morindae Officinalis Radix processed with steaming and 10 batches of Morindae Officinalis Radix processed with salt. The contents of main components were determined with high performance liquid chromatography coupled with four-pole tandem time-of-flight mass spectrometry(UPLC-Q-TOF-MS),and the differences were analyzed. Result:The main components of prepared Morindae Officinalis Radix and Morindae Officinalis Radix processed with salt were fructo-oligosaccharides (GF<italic>n</italic>),monotropein. The main components of Morindae Officinalis Radix processed with steaming were fructose,glucose,sucrose,and monotropein. The main differences of prepared Morindae Officinalis Radix and<italic> </italic>Morindae Officinalis Radix processed with steaming and salt were the contents of fructose,glucose,sucrose and GF2-GF11. The contents of GF2-GF11 in Morindae Officinalis Radix processed with steaming and salt were all lower than those in prepared Morindae Officinalis Radix,with extremely significant differences(<italic>P</italic><0.01). The contents of fructose,glucose and sucrose in<italic> </italic>Morindae Officinalis Radix processed with steaming were significantly higher than those in prepared Morindae Officinalis Radix. The content of GF3 in each batch was higher than 40.0 mg·g<sup>-1</sup> in prepared Morindae Officinalis Radix and Morindae Officinalis Radix processed with salt,and significantly higher than the limit in<italic> Chinese Pharmacopoeia</italic>. However,there were only a few batches of Morindae Officinalis Radix processed with steaming in line with the requirements of <italic>Chinese Pharmacopoeia</italic>. The contents of monotropein in processing Morindae Officinalis Radix and Morindae Officinalis Radix processed with steaming and salt were 42.6,39.8,32.3 mg·g<sup>-1</sup>,respectively. The content of monotropein in prepared Morindae Officinalis Radix was higher than that in Morindae Officinalis Radix processed with steaming. The content of monotropein in Morindae Officinalis Radix processed with steaming was higher than that in Morindae Officinalis Radix<italic> </italic>processed with salt. Compared with the components of GF2-GF11,the effect of processing with steaming process and/or salt on monotropein content was relatively less. Conclusion:The contents of GF2-GF11 components in prepared Morindae Officinalis Radix were converted into fructose,glucose and sucrose after processing with steaming and/or salt. The results showed that the content limit of Morindae Officinalis Radix processed with steaming needs to be revised in line with the requirements of <italic>Chinese Pharmacopoeia </italic>for the quality control of Morindae Officinalis Radix. The results provide a reference basis for revising the quality standards and studying the pharmacodynamic material basis of prepared Morindae Officinalis Radix,Morindae Officinalis Radix processed with steaming and salt.
ABSTRACT
Objective:To compare the contents of adenosine, gastrodin, <italic>p</italic>-hydroxybenzyl alcohol, <italic>p</italic>-hydroxybenzaldehyde, parisinin B and parisinin A in Chijian (the aerial part of <italic>Gastrodia elata</italic>) and Gastrodiae Rhizoma, and compare their effects on immune function and intestinal microflora, evaluating whether it is necessary to study and develop Chijian. Method:The contents of these six constituents were determined by ultra performance liquid chromatography (UPLC), the mobile phase was 0.1% formic acid aqueous solution (A)-acetonitrile (B) for gradient elution (0-4 min, 0.5%B; 4-5 min, 0.5%-2%B; 5-10 min, 2%-15%B; 10-12 min, 15%-20%B; 12-15 min, 20%-95%B; 15-17 min, 95%B; 17-17.5 min, 95%-0.5%B; 17.5-20 min, 0.5%B), the flow rate was 0.5 mL·min<sup>-1</sup>, the detection wavelength was 270 nm. The difference of pharmacological activity of water extracts of Chijian and Gastrodiae Rhizoma was compared, the clearance index, corrected clearance index and peripheral blood were measured in mice model with low immune function induced by cyclophosphamide, B lymphocyte proliferation was determined by lymphocyte transformation test <italic>in vitro</italic>, intestinal microflora was analyzed by 16S rDNA technology and bioinformatics was conducted. Result:The total contents of these six components in powder and ethanol extract of Chijian were higher than that of Gastrodiae Rhizoma, but the total contents of these six components in their water extract were similar, and the total contents of gastrodin and <italic>p</italic>-hydroxybenzyl alcohol met the requirements of the 2020 edition of <italic>Chinese Pharmacopoeia</italic>. Compared with the blank group, the clearance index of immunocompromised mice was significantly increased in the middle-dose (10 g·kg<sup>-1</sup>) group of Chijian water extract, middle- and low-dose (10, 5 g·kg<sup>-1</sup>) groups of Gastrodiae Rhizoma water extract (<italic>P</italic><0.05), the levels of erythrocyte and hematocrit in peripheral blood were significantly increased in the high-dose (20 g·kg<sup>-1</sup>) groups of water extracts of Chijian and Gastrodiae Rhizoma (<italic>P</italic><0.05, <italic>P</italic><0.01), water extract of Gastrodiae Rhizoma with concentration of 400 g·L<sup>-1</sup> and the water extract of Chijian with the concentration of 100 g·L<sup>-1</sup> could promote the proliferation of B lymphocytes induced by lipopolysaccharide. Studies on intestinal microflora showed that compared with the blank group, at the phylum level, the water extracts of Chijian and Gastrodiae Rhizoma increased the relative abundance of Bacteroidetes and decreased the relative abundance of Firmicutes, at the genus level, they increased the relative abundance of <italic>Prevotellaceae</italic>_UCG-001 and <italic>Ruminococcaceae</italic>_UCG-005, and decreased the relative abundance of <italic>Anaerotruncus</italic>, unclassified_<italic>f</italic>_<italic>Erysipelotrichaceae</italic> and<italic> Candidatus</italic>_<italic>Stoquefichus</italic>.<italic> </italic>These intestinal bacteria were related to the immune system, cell proliferation, and metabolism regulation. Conclusion:The total contents of 6 components in the powder, the ethanol and the water extracts of Chijian are higher than or close to those of the corresponding samples of Gastrodiae Rhizoma, the pharmacological activity of Chijian water extract is similar to that of Gastrodiae Rhizoma water extract, indicating that Chijian is worthy of further research and development.
ABSTRACT
At present, 141 compounds have been isolated from Picrorhiza scrophulariiflora and P. kurroa of the Scrophulariaceae plants, including 46 iridoid glycosides, 29 tetracyclic triterpenoids, 25 phenylpropanoids, and 11 phenylethanoid glycosides. Pharmacological studies have demonstrated that they have liver-, heart-, brain-, kidney-, and nerve cells-protecting effects as well as anti-tumor, anti-inflammatory, anti-bacterial, anti-asthma, anti-diabetic, immunomodulatory, and blood lipid-lowering activities. This article reviews the chemical components and pharmacological activities of P. scrophulariiflora and P. kurroa, aiming to provide a basis for the in-depth research, development, and utilization of the two plants.
Subject(s)
Iridoid Glycosides , Picrorhiza , Triterpenes/pharmacologyABSTRACT
The basic features of glandular and non-glandular trichomes on leaves of Artemisia argyi( germplasms from Qichun,Ningbo,Tangyin,and Anguo,respectively) and related species A. stolonifera were observed by scanning electron microscopy( SEM)and compared. There were significant differences in trichome characteristics of leaves at all parts of A. argyi and A. stolonifera,which were closely related to the difference in chemical components. The length of non-glandular trichomes and size of glandular trichomes on middle leaves were the stablest. A. argyi and A. stolonifera can be distinguished by the density of glandular trichome. Additionally,the four germplasms of A. argyi can be discriminated via the density and curvature of non-glandular trichome. The density of non-glandular trichomes was the highest in A. stolonifera. For A. argyi,the germplasm from Qichun had the highest density of non-glandular trichomes on the abaxial surfaces of upper leaves and that from Ningbo had the largest non-glandular trichome curvature. With regard to the germplasm from Anguo,the T-shaped non-glandular trichomes of long stalks on the adaxial surfaces of the middle leaves were lodging-susceptible,and those with slender heads were wave-like. Statistics results of A. argyi and A. stolonifera are as follows: largest glandular trichomes on the adaxial and abaxial surfaces and highest glandular trichome density on the abaxial surfaces of the lower leaves in A. argyi germplasm from Ningbo,highest density of non-glandular trichomes on the abaxial surfaces of upper leaves in A. stolonifera,and highest density of glandular trichomes and non-glandular trichomes on the adaxial surfaces of the upper leaves in A. argyi germplasm from Qichun. According to the observation result under fluorescence microscope( FM),flavonoids were closely related to the size and density of non-glandular trichomes and size of glandular trichomes. The fluorescence intensity was the strongest and fluorescence area was the largest for flavonoids in A. argyi germplasms from Qichun and Tangyin,while the fluorescence for flavonoids was the weakest in A. stolonifera. It was the first time to observe and analyze the trichome ultrastructure of A. argyi leaves at different positions by SEM and FM. This study clarifies the differences between A. stolonifera and four famous A. argyi germplasms,which provides new evidence for the microscopic identification of A. argyi and its related species and serves as a reference for the study of the relationship of A. argyi structure with its components and functions.
Subject(s)
Artemisia , Flavonoids , Microscopy, Electron, Scanning , Plant Leaves , TrichomesABSTRACT
Volatile oil is the main effective component and an important quality indicator of Artemisia argyi leaves. In this study, 100 germplasm resources of A. argyi were collected from all the related habitats in China. The total volatile oils in A. argyi leaves were extracted by steam distillation and the content was determined by GC-MS. The result demonstrated that the content of total volatile oils was in the range of 0.53%-2.55%, with the average of 1.43%. A total of 39 chemical constituents were identified from the volatile oils, including 13 shared by the 100 germplasm resources. Clustering analysis of the 39 constituents showed that the 100 A. argyi samples were categorized into groups Ⅰ(9), Ⅱ(2), Ⅲ(66) and Ⅳ(23), and group Ⅲ had the most volatile medicinal components, with the highest content. Five principal components(PCs) were extracted from 13 shared constituents, which explained 73.454% of the total variance. PC1, PC2, and PC3 mainly reflected the pharmacological activity of volatile oils and the rest two the aroma information. The volatile oils identified in this study lay a foundation for variety breeding of and rational utilization of volatile oils in A. argyi leaves.
Subject(s)
Artemisia , Distillation , Oils, Volatile , Plant Breeding , Plant LeavesABSTRACT
Ethylene responsive factor(ERF), one of the largest families of transcriptional factors in plants, plays a key role in se-condary metabolism of herbal plants. To analyze the expression of ERF family genes, the heat map clustering method was used by analyzing the ginseng transcriptomes of different parts and different growth years. The contents of ginsenosides Rg_1, Re and Rb_1 in various concentrations of MeJA-treated ginseng adventitious roots were determined by UPLC-MS/MS method. The expression of key genes of ginsenoside biosynthesis(DDS, CYP716A47, CYP716A53v2) and ERF family genes in MeJA-treated ginseng adventitious roots were determined by using real-time quantitative PCR. Pearson correlation was adopted to analyze the gene expression pattern of DDS, CYP716A47, CYP716A53v2 gene and ERF family. The results showed that the content of ginseng diol ginsenoside Rb_1 in ginseng adventitious roots treated with different concentrations of MeJA increased, and the content of ginseng triol ginsenoside Rg_1 and Re decreased. It is consistent with the increase of DDS and CYP716A47 expression and the decrease of CYP716A53v2 gene expression. The expression of ERF003, ERF118 and ERF012 genes was significantly positively correlated with CYP716A53v2, but negatively correlated with DDS. While the expression of ERF1B was significantly negatively correlated with CYP716A47.It is proved that ERF003, ERF118 and ERF012 were likely to inhibit the expression of DDS and promote the expression of CYP716A53v2, and ERF1B was likely to inhibit CYP716A47. This work could provide theoretical basis of ERF functional verification of regulating the biosynthesis of ginsenosides.
Subject(s)
Chromatography, Liquid , Gene Expression Regulation, Plant , Ginsenosides , Panax , Plant Roots , Chemistry , Tandem Mass Spectrometry , Transcription FactorsABSTRACT
This article is based on basic data such as field surveys and literature surveys, contrasting and analyzing the distribution of Callicarpa nudiflora by different zoning methods, different data sources, and different spatial scales. The results showed that there were certain differences in the distribution results obtained by using different methods, such as qualitative description, similar ecological environment, and niche model, to divide the distribution of the C. nudiflora, but all of them could reflect the distribution of C. nudiflora to different degrees. Among them, the qualitative description division method has certain advantages in macro guidance in a large scale. The distribution range obtained by the ecological environment similar division method is wider than that obtained by applying the qualitative description method and the niche model method. The results of the zoning of the distribution of the C. nudiflora obtained from different data sources were different. The number and representativeness of the survey data have an impact on the zoning results. Through the analysis of the distribution of different spatial scales, the ecological factors and contribution rates that affect the distribution of C. nudiflora are different in China and in the world. The comprehensive multi-source data analysis showed that C. nudiflora mainly distributed in southern coastal provinces such as Hainan, Guangdong, Guangxi and Fujian in China, and also in Jiangxi, Guizhou, Yunnan, Sichuan, Chongqing, Hunan, Gansu, Taiwan and other provinces. Globally, C. nudiflora are suitable for distribution in Southeast Asia, such as China, Vietnam, Laos, Myanmar, India, etc. There are also potential distribution areas in the southern United States and Mexico.
Subject(s)
Callicarpa , China , Data Collection , Information Storage and Retrieval , VietnamABSTRACT
Maca( Lepidium meyenii) known as the " national treasure of Peru" and " South American ginseng",is annual or biennial herbs of the genus Lepidium in Cruciferae. It mainly contains proteins,amino acids,polysaccharides,alkaloids( including:macamides,imidazoles,hydroxypyridines,carbazoles,organic amines and so on),glucosinolates,macaenes,thioethylurea,sterols and other chemical constituents. In recent years,more and more studies have found that it could treat osteoporosis and improve prostatehyperplasia,and possessed anti-cancer,female climacteric syndrome,rheumatism,antioxidant and other pharmacological effects. In this paper,the chemical constituents and bioactivity of Maca were reviewed,which could provide the basis for the further development and utilization of Maca.
Subject(s)
Antioxidants , Asteraceae , Lepidium , Peru , Plant ExtractsABSTRACT
In this paper, an approach was applied for separation and identification of oligosaccharides in Morinda officinalis How by Ultra performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) with collision energy. The separation was carried out on an ACQUITY UPLC BEH Amide C₁₈(2.1mm×100 mm,1.7 μm) with gradient elution using acetonitrile(A) and water(B) containing 0.1% ammonia as mobile phase at a flow rate of 0.2 mL·min⁻¹. The column temperature was maintained at 40 °C. The information of accurate mass and characteristic fragment ion were acquired by MSE in ESI negative mode in low and high collision energy. The chemical structures and formula of oligosaccharides were obtained and identified by the software of UNIFI and Masslynx 4.1 based on the accurate mass, fragment ions, neutral losses, mass error, reference substance, isotope information, the intensity of fragments, and retention time. A total of 19 inulin oligosaccharide structures were identified including D(+)-sucrose, 1-kestose, nystose, 1F-fructofuranosyl nystose and other inulin oligosaccharides (DP 5-18). This research provided important information about the inulin oligosaccharides in M. officinalis. The results would provide scientific basis for innovative utilization of M. officinalis.