Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Braz. j. med. biol. res ; 45(11): 1017-1024, Nov. 2012. ilus, tab
Article in English | LILACS | ID: lil-650575

ABSTRACT

Neutrophils play an important role in periodontitis by producing nitric oxide (NO) and antimicrobial peptides, molecules with microbicidal activity via oxygen-dependent and -independent mechanisms, respectively. It is unknown whether variation in the production of antimicrobial peptides such as LL-37, human neutrophil peptides (HNP) 1-3, and NO by neutrophils influences the pathogenesis of periodontal diseases. We compared the production of these peptides and NO by lipopolysaccharide (LPS)-stimulated neutrophils isolated from healthy subjects and from patients with periodontitis. Peripheral blood neutrophils were cultured with or without Aggregatibacter actinomycetemcomitans-LPS (Aa-LPS), Porphyromonas gingivalis-LPS (Pg-LPS) and Escherichia coli-LPS (Ec-LPS). qRT-PCR was used to determine quantities of HNP 1-3 and LL-37 mRNA in neutrophils. Amounts of HNP 1-3 and LL-37 proteins in the cell culture supernatants were also determined by ELISA. In addition, NO levels in neutrophil culture supernatants were quantitated by the Griess reaction. Neutrophils from periodontitis patients cultured with Aa-LPS, Pg-LPS and Ec-LPS expressed higher HNP 1-3 mRNA than neutrophils from healthy subjects. LL-37 mRNA expression was higher in neutrophils from patients stimulated with Aa-LPS. Neutrophils from periodontitis patients produced significantly higher LL-37 protein levels than neutrophils from healthy subjects when stimulated with Pg-LPS and Ec-LPS, but no difference was observed in HNP 1-3 production. Neutrophils from periodontitis patients cultured or not with Pg-LPS and Ec-LPS produced significantly lower NO levels than neutrophils from healthy subjects. The significant differences in the production of LL-37 and NO between neutrophils from healthy and periodontitis subjects indicate that production of these molecules might influence individual susceptibility to important periodontal pathogens.


Subject(s)
Adult , Female , Humans , Male , Middle Aged , Antimicrobial Cationic Peptides/biosynthesis , Neutrophils/metabolism , Nitric Oxide/biosynthesis , Periodontitis/immunology , alpha-Defensins/biosynthesis , Case-Control Studies , Chronic Disease , Dental Plaque Index , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Lipopolysaccharides , Neutrophils/immunology , Periodontal Index , Periodontitis/metabolism , Reverse Transcriptase Polymerase Chain Reaction
2.
Braz. j. med. biol. res ; 40(3): 391-399, Mar. 2007. graf, ilus
Article in English | LILACS | ID: lil-441761

ABSTRACT

Chagas' disease, caused by the protozoan Trypanosoma cruzi, is a major cause of cardiovascular disability in countries where it is endemic. Damage to the heart microvasculature has been proposed to be an important factor in the pathogenesis of heart dysfunction. Endothelin-1 (ET-1) is a potent vasoconstrictor and exerts its effects via specific ET A and ET B receptors. A few studies have suggested a role for ET-1 and its receptors in the pathogenesis of Chagas' disease. We investigated the effects of treatment with bosentan, an ET A/ET B receptor antagonist, on the course of T. cruzi infection (Y strain) in C57Bl/6 mice. Treatment with bosentan (100 mg kg-1 day-1) was given per os starting day 0 after infection until sacrifice. Bosentan significantly increased myocardial inflammation, with no effects on parasitemia. Although the total number of nests was similar, a lower number of intact amastigote nests was found in the heart of bosentan-treated animals. Bosentan failed to affect the infection-associated increase in the cardiac levels of the cytokines IFN-g and TNF-a and the chemokines CCL2/MCP-1, CCL3/MIP-1a and CCL5/RANTES. In vitro, pre-incubation with ET-1 (0.1 æM) 4 h before infection enhanced the uptake of the parasites by peritoneal macrophages, and this effect was abrogated when macrophages were pre-treated with bosentan (1 æM) 15 min before incubation with ET-1. However, ET-1 did not alter killing of intracellular parasites after 48 h of in vitro infection. Our data suggest that bosentan-treated mice have a delay in controlling parasitism which is compensated for exacerbated inflammation. Infection is eventually controlled in these animals and lethality is unchanged, demonstrating that ET-1 plays a minor role in the protection against acute murine T. cruzi infection.


Subject(s)
Animals , Male , Mice , Chagas Cardiomyopathy/metabolism , Endothelin-1/physiology , Parasitemia/metabolism , Receptors, Endothelin/antagonists & inhibitors , Sulfonamides/pharmacology , Trypanosoma cruzi/physiology , Acute Disease , Chagas Cardiomyopathy/parasitology , Chagas Cardiomyopathy/pathology , Cytokines/analysis , Disease Models, Animal , Parasitemia/immunology , Trypanosoma cruzi/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL