ABSTRACT
Objectives: To explore the antitumor effects of redox-responsive nanoparticles containing platinum(Ⅳ)-NP@Pt(Ⅳ) in ovarian cancer. Methods: Redox-responsive polymer carriers were synthesized. Polymer carriers and platinum(Ⅳ)-Pt(Ⅳ) can self-assemble into NP@Pt(Ⅳ). Inductively coupled plasma mass spectrometry was performed to detect the platinum release from NP@Pt(Ⅳ) in reducing environment and the platinum content in ovarian cancer cells ES2 treated with cisplatin, Pt(Ⅳ) and NP@Pt(Ⅳ). The proliferation ability of the ovarian cancer cells were detected by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Cellular apoptosis was assessed by flow cytometry. Collection of primary ovarian cancer tissues from patients with primary high-grade serous ovarian cancer who were surgically treated at the Cancer Hospital of the Chinese Academy of Medical Sciences from October to December 2022. The high-grade serous ovarian cancer patient-derived xenograft (PDX) mice were intravenously injected with Cy7.5 labeled NP@Pt(Ⅳ) followed by in vivo imaging system. Mice were treated with PBS, cisplatin and NP@Pt(Ⅳ). Tumor volume and weight were measured in each group. Necrosis, apoptosis and cell proliferation of tumor tissues were detected by hematoxylin-eosin (HE) staining, TUNEL fluorescence staining and Ki-67 immunohistochemistry staining. Body weight and HE staining of heart, liver, spleen, lung and kidney of mice in each group were measured. Results: The platinum release of NP@Pt(Ⅳ) after 48 hours in reducing environment was 76.29%, which was significantly higher than that of 26.82% in non-reducing environment (P<0.001). The platinum content in ES2 cells after 4 hours and 7 hours of treatment with NP@Pt(Ⅳ) (308.59, 553.15 ng/million cells) were significantly higher than those of Pt(Ⅳ) (100.21, 180.31 ng/million cells) and cisplatin (43.36, 50.36 ng/million cells, P<0.05). The half inhibitory concentrations of NP@Pt(Ⅳ) in ovarian cancer cells ES2, A2780, A2780DDP were 1.39, 1.42 and 4.62 μmol/L, respectively, which were lower than those of Pt(IV) (2.89, 7.27, and 16.74 μmol/L) and cisplatin (5.21, 11.85, and 71.98 μmol/L). The apoptosis rate of ES2 cells treated with NP@Pt(Ⅳ) was (33.91±3.80)%, which was significantly higher than that of Pt(Ⅳ) [(16.28±2.41)%] and cisplatin [(15.01±1.17)%, P<0.05]. In high-grade serous ovarian cancer PDX model, targeted accumulation of Cy7.5 labeled NP@Pt(Ⅳ) at tumor tissue could be observed. After the treatment, the tumor volume of mice in NP@Pt(IV) group was (130±98) mm3, which was significantly lower than those in control group [(1 349±161) mm3, P<0.001] and cisplatin group [(715±293) mm3, P=0.026]. The tumor weight of mice in NP@Pt(IV) group was (0.17±0.09)g, which was significantly lower than those in control group [(1.55±0.11)g, P<0.001] and cisplatin group [(0.82±0.38)g, P=0.029]. The areas of tumor necrosis and apoptosis in mice treated with NP@Pt(Ⅳ) were higher than those in mice treated with cisplatin. Immunohistochemical staining revealed that there were low expressions of Ki-67 at tumor tissues of mice treated with NP@Pt(Ⅳ) compared with cisplatin. The change in body weight of mice in NP@Pt(Ⅳ) group was not significantly different from that of the control group [(18.56±2.04)g vs.(20.87±0.79)g, P=0.063]. Moreover, the major organs of the heart, liver, spleen, lung, and kidney were also normal by HE staining. Conclusion: Redox-responsive NP@Pt(Ⅳ), produced in this study can enhance the accumulation of cisplatin in ovarian cancer cells and improve the efficacy of ovarian cancer chemotherapy.
Subject(s)
Humans , Female , Animals , Mice , Ovarian Neoplasms/drug therapy , Platinum , Cisplatin/pharmacology , Cell Line, Tumor , Ki-67 Antigen , Carcinoma, Ovarian Epithelial , Cystadenocarcinoma, Serous , Disease Models, Animal , Eosine Yellowish-(YS) , Necrosis , Polymers , Body WeightABSTRACT
Objectives: To explore the antitumor effects of redox-responsive nanoparticles containing platinum(Ⅳ)-NP@Pt(Ⅳ) in ovarian cancer. Methods: Redox-responsive polymer carriers were synthesized. Polymer carriers and platinum(Ⅳ)-Pt(Ⅳ) can self-assemble into NP@Pt(Ⅳ). Inductively coupled plasma mass spectrometry was performed to detect the platinum release from NP@Pt(Ⅳ) in reducing environment and the platinum content in ovarian cancer cells ES2 treated with cisplatin, Pt(Ⅳ) and NP@Pt(Ⅳ). The proliferation ability of the ovarian cancer cells were detected by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Cellular apoptosis was assessed by flow cytometry. Collection of primary ovarian cancer tissues from patients with primary high-grade serous ovarian cancer who were surgically treated at the Cancer Hospital of the Chinese Academy of Medical Sciences from October to December 2022. The high-grade serous ovarian cancer patient-derived xenograft (PDX) mice were intravenously injected with Cy7.5 labeled NP@Pt(Ⅳ) followed by in vivo imaging system. Mice were treated with PBS, cisplatin and NP@Pt(Ⅳ). Tumor volume and weight were measured in each group. Necrosis, apoptosis and cell proliferation of tumor tissues were detected by hematoxylin-eosin (HE) staining, TUNEL fluorescence staining and Ki-67 immunohistochemistry staining. Body weight and HE staining of heart, liver, spleen, lung and kidney of mice in each group were measured. Results: The platinum release of NP@Pt(Ⅳ) after 48 hours in reducing environment was 76.29%, which was significantly higher than that of 26.82% in non-reducing environment (P<0.001). The platinum content in ES2 cells after 4 hours and 7 hours of treatment with NP@Pt(Ⅳ) (308.59, 553.15 ng/million cells) were significantly higher than those of Pt(Ⅳ) (100.21, 180.31 ng/million cells) and cisplatin (43.36, 50.36 ng/million cells, P<0.05). The half inhibitory concentrations of NP@Pt(Ⅳ) in ovarian cancer cells ES2, A2780, A2780DDP were 1.39, 1.42 and 4.62 μmol/L, respectively, which were lower than those of Pt(IV) (2.89, 7.27, and 16.74 μmol/L) and cisplatin (5.21, 11.85, and 71.98 μmol/L). The apoptosis rate of ES2 cells treated with NP@Pt(Ⅳ) was (33.91±3.80)%, which was significantly higher than that of Pt(Ⅳ) [(16.28±2.41)%] and cisplatin [(15.01±1.17)%, P<0.05]. In high-grade serous ovarian cancer PDX model, targeted accumulation of Cy7.5 labeled NP@Pt(Ⅳ) at tumor tissue could be observed. After the treatment, the tumor volume of mice in NP@Pt(IV) group was (130±98) mm3, which was significantly lower than those in control group [(1 349±161) mm3, P<0.001] and cisplatin group [(715±293) mm3, P=0.026]. The tumor weight of mice in NP@Pt(IV) group was (0.17±0.09)g, which was significantly lower than those in control group [(1.55±0.11)g, P<0.001] and cisplatin group [(0.82±0.38)g, P=0.029]. The areas of tumor necrosis and apoptosis in mice treated with NP@Pt(Ⅳ) were higher than those in mice treated with cisplatin. Immunohistochemical staining revealed that there were low expressions of Ki-67 at tumor tissues of mice treated with NP@Pt(Ⅳ) compared with cisplatin. The change in body weight of mice in NP@Pt(Ⅳ) group was not significantly different from that of the control group [(18.56±2.04)g vs.(20.87±0.79)g, P=0.063]. Moreover, the major organs of the heart, liver, spleen, lung, and kidney were also normal by HE staining. Conclusion: Redox-responsive NP@Pt(Ⅳ), produced in this study can enhance the accumulation of cisplatin in ovarian cancer cells and improve the efficacy of ovarian cancer chemotherapy.
Subject(s)
Humans , Female , Animals , Mice , Ovarian Neoplasms/drug therapy , Platinum , Cisplatin/pharmacology , Cell Line, Tumor , Ki-67 Antigen , Carcinoma, Ovarian Epithelial , Cystadenocarcinoma, Serous , Disease Models, Animal , Eosine Yellowish-(YS) , Necrosis , Polymers , Body WeightABSTRACT
Objective: To investigate the mechanism of signal transducer and activator of transcription 3 (STAT3) and cancer associated fibroblasts (CAF) jointly generate chemo-resistance in epithelial-ovarian cancer and their effect on prognosis. Methods: A total of 119 patients with high-grade ovarian serous cancer who received surgery in Cancer Hospital of Chinese Academy of Medical Sciences from September 2009 to October 2017 were collected. The clinico-pathological data and follow-up data were complete. Multivariate Cox regression model was used to analyze the prognostic factors. Ovarian cancer tissue chips of patients in our hospital were prepared. EnVision two-step method immunohistochemistry was used to detect the protein expression levels of STAT3, the specific markers of CAF activation, fibroblast activating protein (FAP), and type Ⅰ collagen (COL1A1) secreted by CAF. The relationship between the expression of STAT3, FAP, COL1A1 protein and drug resistance and prognosis of ovarian cancer patients was analyzed, and the correlation between the expression of three proteins was analyzed. These results were verified through the gene expression and prognostic information of human ovarian cancer tissues collected in the GSE26712 dataset of gene expression omnibus (GEO) database. Results: (1) Multivariate Cox regression model analysis showed that chemotherapy resistance was an independent risk factor for overall survival (OS) of ovarian cancer (P<0.001). (2) The expression levels of STAT3, FAP, and COL1A1 proteins in chemotherapy resistant patients were significantly higher than those in chemotherapy sensitive patients (all P<0.05). Patients with high expression of STAT3, FAP, and COL1A1 had significantly shorter OS than those with low expression (all P<0.05). According to the human ovarian cancer GSE26712 dataset of GEO database, patients with high expression of STAT3, FAP, and COL1A1 also showed shorter OS than patients with low expression (all P<0.05), the verification results were consistent with the detection results of ovarian cancer patients in our hospital. (3) Correlation analysis showed that the protein level of STAT3 was positively correlated with FAP and COL1A1 in our hospital's ovarian cancer tissue chips (r=0.47, P<0.001; r=0.30, P=0.006), the analysis of GEO database GSE26712 dataset showed that the expression of STAT3 gene and FAP, COL1A1 gene were also significantly positively correlated (r=0.31, P<0.001; r=0.52, P<0.001). Conclusion: STAT3 and CAF could promote chemotherapy resistance of ovarian cancer and lead to poor prognosis.
Subject(s)
Female , Humans , Cancer-Associated Fibroblasts/pathology , Carcinoma, Ovarian Epithelial , Ovarian Neoplasms/pathology , Prognosis , STAT3 Transcription Factor/metabolism , Drug Resistance, NeoplasmABSTRACT
Objective To detect the expression of autophagy-related gene Atg3 and Atg5 in bone marrow mononuclear cells (BMMNCs) from children with acute leukemia(AL),so as to explore the relationship between autophagy and the pathogenesis of AL in children.Methods Seventy-four bone marrow specimens were obtained from children with AL in the First Affiliated Hospital of Zhengzhou University Pediatrics Hematology Ward,including 37 cases of initially diagnosed AL without any treatment,28 cases of AL in complete remission,9 cases of refractory or relapse AL and 28 bone marrow specimens from children without tumor were also collected as the control group.BMMNCs were separated by Lydroxypropylmethyl Cellulose.After BMMNCs were stained by Monodansylcadaverine,the autophagy phenomenon was observed by using fluorescence microscope,and the ratio of autophagy was detected by using flow cytometry.Reverse transcription polymerase chain reaction(RT-PCR) was used to detect the expression of Atg3 mRNA and Atg5 mRNA in each group.Results It was found that autophagy phenomenon was more common in the initially diagnosed group and the refractory/relapse group,and the autophagy ratio in both groups was respectively (17.07 ±2.31) %,(15.37 ± 1.59) %,respectively,which were obviously higher than that of the control group (2.71 ± 1.57) % and that of the complete remission group.The differences were statistically significant (t =28.29,20.96,all P < 0.01).The autophagy ratio in complete remission group was (3.48 ± 1.94) %,and compared with the control group,the difference was of no statistical significance(t =1.634,P > 0.05).The autophagy ratio in the refractory/relapse group higher than that in the complete remission group (t =16.61,P < 0.05).The expressions of Atg3 mRNA and Atg5 mRNA in initially diagnosed group and refractory/relapse group were higher than those of the complete remission group and control group,and the differences were statistically significant (F =67.592,106.160,all P < 0.008) ; the difference between complete remission group and control group was of no statistical significance (P > 0.008).Conclusions The autophagy ratio and the expressions of Atg3 mRNA and Atg5 mRNA in initially diagnosed group and the refractory/ relapse group were both obviously higher.It was revealed that higher autophagy activity,which was caused by upregulated expressions of Atg3 mRNA and Atg5 mRNA,had a closely connection with the mechanism of occurrence,development and resistance of AL in children.