Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Add filters

Year range
Rev. bras. cir. cardiovasc ; 34(2): 165-172, Mar.-Apr. 2019. tab, graf
Article in English | LILACS | ID: biblio-990563


Abstract Introduction: Quantitative flow ratio (QFR) is a novel method enabling efficient computation of FFR from three-dimensional quantitative coronary angiography (3D QCA) and thrombolysis in myocardial infarction (TIMI) frame counting. We decided to perform a systematic review and quantitative meta-analysis of the literature to determine the correlation between the diagnosis of functionally significant stenosis obtained by QFR versus FFR and to determine the diagnostic accuracy of QFR for intermediate coronary artery stenosis. Methods: We searched PubMed, Embase, and Web of Science for studies concerning the diagnostic performance of QFR. Our meta-analysis was performed using the DerSimonian and Laird random effects model to determine sensitivity, specificity, positive likelihood ratio (LR+), negative likelihood ratio (LR-), and diagnostic odds ratio (DOR). The sROC was used to determine diagnostic test accuracy. Results: Nine studies consisting of 1175 vessels in 1047 patients were included in our study. The pooled sensitivity, specificity, LR+, LR-, and DOR for QFR were 0.89 (95% CI: 0.86-0.92), 0.88 (95% CI: 0.86-0.91), 6.86 (95% CI,: 5.22-9.02), 0.14 (95% CI: 0.10-0.21), and 53.05 (95% CI: 29.75-94.58), respectively. The area under the summary receiver operating characteristic (sROC) curve for QFR was 0.94. Conclusion: QFR is a simple, useful, and noninvasive modality for diagnosis of functional significance of intermediate coronary artery stenosis.

Humans , Coronary Angiography/methods , Coronary Stenosis/physiopathology , Coronary Stenosis/diagnostic imaging , Fractional Flow Reserve, Myocardial/physiology , Regression Analysis , Reproducibility of Results , Sensitivity and Specificity , Imaging, Three-Dimensional/methods