ABSTRACT
Traditional methods of microbial synthesis usually rely on a single engineered strain to synthesize the target product through metabolic engineering. The key cofactors, precursors and energy are produced by the introduced complex synthetic pathways. This would increase the physiological burden of engineering strains, resulting in a decrease in the yield of target products. The modular co-culture engineering has become an attractive solution for effective heterologous biosynthesis, where product yield can be greatly improved. In the modular co-culture engineering, the coordination between the population of different modules is essential for increasing the production efficiency. This article summarized recent advances in the application of modular co-culture engineering and population control strategies.