ABSTRACT
BACKGROUND:Previous brain studies have mostly focused on adults and fetuses,and the developmental characteristics of young children's brainstems have rarely been studied. OBJECTIVE:To observe the brainstem development characteristics of healthy young children and to explore the age-related differences and their correlation with sex. METHODS:From January 2019 to April 2022,a retrospective study of 3.0T MRI images of 174 children aged 2 to 6 years in the Affiliated Hospital of Inner Mongolia Medical University was conducted,and the median sagittal diameter,area and angle of the brainstem(including midbrain,pons and medulla oblongata)were measured. RESULTS AND CONCLUSION:There is an age-related increase in the anterior and posterior diameters of the midbrain,pons and medulla oblongata in the 2-5 years old group as well as in the longitudinal diameter and area of the midbrain,pons and medulla oblongata in the 2-6 years old group.Except for the longitudinal diameter of the medulla oblongata,all others show a positive correlation with age(r>0,P<0.05).In the 2-3 years old group and 4-5 years old group,the children are in the rapid growth and development stage,and these two age groups can be used as the key observation indicators for the development of young children.The anterior-posterior diameter,longitudinal diameter,area of the pons and total brainstem area are strongly correlated with age,which can be used as the key observation indicators for the brainstem development in young children.
ABSTRACT
BACKGROUND:Nowadays,there are increasing reports on the digitization and visualization system of acupuncture points for adults in traditional Chinese medicine,and the digitization and visualization system of acupuncture points for children in traditional Chinese medicine and the simulation system of acupuncture manipulation for Mongolian medicine training have been reported.However,there are no reports on relevant systems for children in Mongolian medicine. OBJECTIVE:To develop a simulation system of acupuncture points for children in Mongolian medicine,in the hope that it can be used for clinical teaching,manipulation practice and research on acupuncture safety. METHODS:Based on the tomographic anatomical dataset of preschool boys,a three-dimensional(3D)digital virtual anatomical model of children with multiple internal organs and tissues was constructed by using PhotoShop.2021 and Digihuman Reconstruction System software.The relevant annotation information database of 27 acupoints such as Dinghui acupoint of Mongolian medicine was compiled by the Unity database language.The Mongolian gold needle and silver needle were selected to record the acupuncture point teaching video on the 3D printed head and neck resin model of children.In Unity3D software,children's anatomical model,acupoint annotation information database and acupuncture operation video were integrated and coded,and a 3D digital children's Mongolian acupuncture acupoint visualization system integrating simulation acupuncture training,clinical teaching and acupuncture safety research was successfully created. RESULTS AND CONCLUSION:This study was based on real children's specimens.In order to reduce the error of two-dimensional segmentation,the manual layer-by-layer segmentation section image method was used to ensure the accuracy of the 3D model to the greatest extent.The Digihuman Reconstruction System was used to extract and save the individual segmentation data while maximizing the accuracy of the 3D model.PhotoShop.2021 software was used to complete the 3D reconstruction of the outer skin of the head and neck of children and the internal bony structure,cervical spinal cord,blood vessels and nerves,muscles and ligaments.After 3D reconstruction,the basic morphology of each independent structure and the integrity of the overall contour were verified in MeshLab software and the final fine adjustment and anatomical position confirmation were conducted using 3-matic research 13.0 software.The real anatomical morphology of the head and neck of preschool children was successfully simulated and restored.Unity3D software was used to integrate the 3D model of children,acupuncture operation video and acupoint annotation database,and the 3D digital Mongolian acupuncture acupoint visualization system for children was successfully constructed.Based on the real continuous fault ultra-thin dataset of preschool boys in China,China's first 3D digitization and visualization system of acupuncture points in the head and neck of children in Mongolian medicine was developed.Compared with the previous acupuncture soft works,this system is more suitable for the anatomical morphological development characteristics of Asian children,and has a high value of application in the fields of research on the safety of acupuncture in Mongolian medicine,clinical teaching and acupuncture simulation training.
ABSTRACT
BACKGROUND:The calcaneus is located in the lower posterior part of the foot and is heavily stressed.Calcaneus is complex and irregular in shape,surrounded by thin cortical bone and filled with a large number of trabeculae.The study of the microstructure,movement,and distribution of trabeculae is helpful to improve the understanding of calcaneus fracture. OBJECTIVE:The image data of calcaneus were obtained by scanning the calcaneus specimens with micro-computed tomography,and the structure of trabecular bone in calcaneus was analyzed to explore the morphology,distribution and structural characteristics of trabecular bone in calcaneus. METHODS:Dry adult calcaneus specimens were continuously scanned by micro-computed tomography,and the images were obtained after scanning and stored in DICOM format.Image data were imported into Hiscan Analyzer software to display clear and complete images of the sagittal plane,coronal plane,and the horizontal plane of the adult calcaneus.The trabecular movement of bone was observed layer by layer.According to the trabecular movement characteristics,the sagittal plane of the calcaneus was divided into six parts.A 49-mm2 region of interest was selected for each part at the same thickness as 7 mm.The three-dimensional microstructure of calcaneus and trabecular bone was obtained after three-dimensional reconstruction.After binarization,the volume fraction,surface density,trabecular thickness,trabecular space,and trabecular number parameters of the trabecular bone in the region of interest were calculated by software. RESULTS AND CONCLUSION:(1)The cortical layer of the calcaneus was very thin and filled with a large amount of cancellous bone,and the cortical layer of the horn of Gissane was obviously thickened.(2)The trabecular volume fraction in the upper part of the calcaneus was greater than that in the anterior part of the lower part of the calcaneus,the central triangle,the posterior part of the lower part of the calcaneus,and the base of the calcaneus,and the trabecular volume fraction in the tubercle of the calcaneus was greater than that in the anterior part of the lower part of the calcaneus,the central triangle,the posterior part of the lower part of the calcaneus,and the base of the calcaneus.The surface density of the trabecular bone in the tubercle of the calcaneus was higher than that in the front of the lower calcaneus,the middle triangle area,and the bottom of calcaneus,and the surface density of the trabecular bone in the upper part of calcaneal bone,and the lower part of the calcaneus was higher than that in the middle triangle area.The thickness of the trabecular bone in the upper part of the calcaneus was greater than that in the tubercle of the calcaneal bone.The bone trabecular space in the middle triangle was larger than that in the upper part of the calcaneus and calcaneal tubercles.The number of bone trabeculae in the calcaneal tubercles was greater than that in the middle triangle area.(3)These results indicate that the trabeculae of rod bone were mainly distributed in the middle triangle area.The surface density of trabeculae was the smallest,the volume fraction was smaller,and the space between trabeculae was the largest.This part of the bone is relatively loose.The compression resistance is poor when subjected to high impact.The trabecular bone fractures first occur,which is a prone site for fractures.
ABSTRACT
Objective To analyze the imaging manifestations of chondromyxoid fibroma,so as to improve diagnostic accuracy.Methods The X-ray,CT and MRI manifestations of 8 cases with chondromyxoid fibroma confirmed by surgical pathology were analyzed retrospectively.Results All of 8 cases were in the long tubular bones.X-ray showed oval,well defined,eccentric,radiolucent lesion with surrounding sclerosis.The thick dense bony or coarse reticular septation were seen in 6 cases.CT scan showed osteolytic,surrounding sclerosis,and 1 case with foci of calcification.MRI images showed a low or medium signal on T1WI,high signal on T2WI,1 case with a equal T1WI and slight high T2WI signal intensity peripheral rim around.Two cases with diffused enhancement on T1WI after intravenous injection of gapentetate acid meglumine injection and a peripheral liner enhancement in 1 case.Conclusion Chondromyxoid fibroma has certain imaging characteristics,but should be combined with X-ray,CT and MRI to differentiate from other bone tumors with similar imaging manifestations.