ABSTRACT
Objective To predict the core targets and action pathways of Hedysari Radix based on UPLC-MS/MS and network pharmacology methods,and to verify the results of network pharmacology by molecular docking and molecular dynamics techniques.This article aims to investigate immune regulation mechanism of effective components absorbed into blood from Hedysari Radix.Methods Qualitative quantification of effective components absorbed into blood from Hedysari Radix were operated by using UPLC-MS/MS technique.The corresponding targets of effective components absorbed into blood from Hedysari Radix were screened by TCMSP and HERB databases.Targets of immune-related disease were obtained through DisGeNET,OMIM,TTD,and MalaCards databases.The network of"components absorbed into blood from Hedysari Radix-immune-related diseases"was then constructed.GO and KEGG enrichment analysis and mapped the PPI network were performed.Molecular docking and molecular dynamics techniques were applied for validation.Results A total of 8 prototype components absorbed into blood,synergistically acting on 101 targets,were identified by UPLC-MS/MS.They mediated 538 biological processes including immune response,positive regulation of gene expression,receptor binding,and cytokine activity.Meanuhile,116 signaling pathways,such as HIF-1,Toll-like receptor,JAK-STAT,T cell receptor,PI3K-Akt,and FoxO etc.were involved.The core targets were MAPK14,PTGS2,MMP9,PPARG,CCND1,etc..The results of molecular docking showed that formononetin and calycosin had strong docking binding activity with MAPK14.And molecular dynamics simulations further demonstrated that the binding between MAPK14 and formononetin or calycosin had good structural stability and binding affinity.Conclusion The results of serum pharmacochemistry,network pharmacology and molecular dynamics were verified to reveal the material basis and mechanism of Hedysari Radix in regulating immunity.The aim of this study is to provide scientific basis for its immunomodulatory mechanism.
ABSTRACT
Malignant tumors are one of the main causes of human death worldwide and pose a serious threat to human health. The current treatment methods are mainly the combination of chemotherapeutics, surgery, radiotherapy, or hormone therapy. The treatment process has limitations such as multidrug resistance, non-selective targeting of cancer cells, and drug toxicity. With the development and application of traditional Chinese medicine (TCM), Chinese medicine has the characteristics of multi-angle and multi-mechanism coordination and slight toxic and side effects. It can effectively inhibit tumor proliferation, differentiation, and metastasis, and avoid drug resistance, serving as the focus of current tumor treatment research. Hedysari Radix, one of the genuine medicinal materials in Gansu province, is a tonic Chinese medicine with a wide range of pharmacological effects such as anti-inflammation, immune regulation, anti-oxidation, prevention and treatment of diabetic complications. In the majority of the ancient works on herbs of the past dynasties, Hedysari Radix was included under the item of Astragali Radix and used as Astragali Radix. Hedysari Radix is superior to Astragali Radix in enhancing immunity, scavenging free radicals, and resisting liver fibrosis. Studies have found that the effective components of Hedysari Radix have a prominent anti-tumor effect and a significant inhibitory effect on various malignant tumors such as liver cancer, bladder cancer, gastric cancer, breast cancer, and colorectal cancer. They can also combine with clinical anti-cancer drugs to reduce the toxic and side effects of chemotherapy drugs and improve the tolerance of patients during chemotherapy. On the basis of current research, this study summarized the mechanism of Hedysari Radix active components in inducing cell apoptosis, blocking cell cycle, inhibiting tumor cell proliferation, migration, and invasion, regulating micro mRNA (miRNA), inducing cell autophagy, enhancing immune regulation, as well as reducing toxicity and enhancing efficiency and sensitization with clinical chemotherapeutics, and systematically explained the anti-tumor mechanism of Hedysari Radix active components, aiming to provide a basic reference for the further exploration of the anti-tumor mechanism of Hedysari Radix and the further development and utilization of its effective components.
ABSTRACT
To investigate the effects of Astragalus polysaccharide (APS) on proliferation of basal-like breast cancer cell line MDA-MB-468 cells and Akt phosphorylation in MDA-MB-468 cells.