Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Add filters

Year range
Journal of Medical Biomechanics ; (6): E296-E303, 2020.
Article in Chinese | WPRIM | ID: wpr-862384


Objective The flow field of electromagnetically driven pulsating perfusion blood pump was simulated by computational fluid dynamics (CFD) method, and the flow state of blood in blood pump was improved by modifying the structure of pump head, so as to improve its anti-hemolytic performance. Methods The influences of changes in pump head structure on flow field in the pump were analyzed by using Fluent 17.0. Four simulation experiments were carried out to analyze streamline distributions of the internal liquid, the turbulent flow energy distribution on axis of the model, pressure loss of blood flowing through the pump head and shear stress on surface of the model. Results In the four experiments, when the angle between the inlet and outlet of the pump head was symmetrical and the angle between the pump head and the symmetrical axis (α) was 30°, there was no obvious disturbance in the flow line and the turbulence degree was low. In Experiment 1, the pressure loss was 376.8 Pa, with the minimum value. The maximum shear stress in Experiment 2 and 3 was 258.6 Pa and 302.8 Pa, respectively, which met the biomechanical requirements of blood pump such as pressure loss and hemolysis. The model with α=30° was selected as pump head structure of the pulsating blood pump driven by electromagnetic force, and was fabricated by 3D printing technology. Conclusions By optimization of the pump head, the hemolysis performance of the blood pump was improved. The research results can be applied to the design and experiment of a new electromagnetic drive pulse perfusion blood pump.