ABSTRACT
Ultra performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry(LC-MS) was used to establish the chromatography fingerprint for fresh(FRAS) and dry(RAS) roots of Angelica sinensis from 10 different places. The rat model of blood deficiency was established by acetyl-phenyl-hydrazine(APH) and cyclophosphamide(CTX). Then grey relational analysis(GRA) and partial least squares regression(PLS) were used to investigate the spectrum-effect relationship between the relative contents and the data of enriching blood pharmacodynamics efficacy. The results showed that the FRAS and RAS had certain enriching blood activities(P<0.05). The contribution degree of the FRAS and RAS to enriching blood activities of each common peaks were determined by regression coefficient. Among them, 4 common peaks contributed significantly to the effect of enriching blood activities, P1(unknown), P2(unknown), P7(ferulic acid), and P11(senkyunolide A) respectively. This paper investigated the spectrum-effect relationship between enriching blood activities and LC-MS chromatography fingerprint of RAS and FRAS, and determined the effective compositions of RAS and FRAS with enriching blood activities. It lays a theoretical foundation for the comprehensive development and utilization of A. sinensis.
Subject(s)
Animals , Rats , Angelica sinensis , Chemistry , Chromatography, Liquid , Drugs, Chinese Herbal , Pharmacology , Mass Spectrometry , Phytochemicals , Pharmacology , Plant Roots , ChemistryABSTRACT
Ultraperformance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry(UPLC-Q-TOF-MS) was used to establish the chromatography fingerprint for aerial parts of Angelica sinenis(AAS) from 10 different places. Acetyl-phenyl-hydrazine(APH) was used to duplicate the mouse model of blood deficiency. Then partial least squares regression was used to investigate the spectrum-effect relationship between the relative contents and the data of enriching blood pharmacodynamics efficacy. The results showed that the three groups of high, medium and low doses of AAS had certain enriching blood activities(P<0.05), and the high dose group had the best effect(P<0.01). The contribution degree of the AAS to enriching blood activities of each common peaks were determined by PLS regression coefficient. Among them, 7 common peaks, including P17(unknown), P18(unknown), P19(unknown), P28(alisol B 23-acetate or its isomer), N5(luteolin), N11(1-caffeoylquinicacid,1-O-caffeoylquinic acid) and N14(unknown), contributed significantly to the effect of enriching blood activities. This paper dealed with the investigation on the spectrum-effect relationship between enriching blood activities and LC-MS chromatography fingerprint of AAS, and determination of the effective compositions of AAS with enriching blood activities. It provided theoretical foundation for the comprehensive development and utilization of AAS.