Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Add filters

Year range
Chinese Journal of Biotechnology ; (12): 1203-1218, 2015.
Article in Chinese | WPRIM | ID: wpr-240563


To construct a system of genetic transformation suitable for Rhizopus oryzae, we constructed a single-exchange vector pBS-hygro carrying hygromycin B resistance gene (hph) as its selective marker using gene splicing by overlap extension PCR (SOE PCR) technique. We introduced this recombinant vector into Rhizopus oryzae AS 3.819 by PEG/CaCl2-mediated transformation of protoplast, electroporation of protoplast and germinated spores; and we studied the effects of hydrolysis time, field strength and spore germination time on transformation frequency. We conducted quantitative real-time PCR (qPCR) assay to determine the gene copy number of ldhA integrated in the genome of R. oryzae transformants and its effect on the stability of transformants. We successfully achieved R. oryzae transformants integrated with pBS-hygro-ldhA vector. The optimal hydrolysis time for protoplast production was 140 min, and the optimal field strength of electroporation pulse for protoplast was 13 kV/cm. The optimal germination time of spores for electroporation was 2.5 h, and the optimal field strength of electroporation pulse was 14 kV/cm. The transformation frequency of method based on germinated spores was generally higher than the methods based on protoplast. The qPCR test results suggested that transformants with high copy number of integration in a certain range were relatively stable. Our results provided basis and support for metabolic regulation and genetic engineering breeding of R. oryzae.

DNA, Recombinant , Electroporation , Genetic Engineering , Genetic Vectors , Hygromycin B , Protoplasts , Real-Time Polymerase Chain Reaction , Rhizopus , Genetics , Transformation, Genetic
Chinese Journal of Biotechnology ; (12): 1729-1733, 2008.
Article in Chinese | WPRIM | ID: wpr-275348


In order to carry out the process of the repeated intermittent L-lactic acid fermentation by self-immobilized Rhizopus oryzae, we investigated the effect of medium compositions on the morphology of Rhizopus oryzae. In submerged culture, fungi can be grown as broths of freely suspended mycelia and pellets or clumps, the pellets can be immobilized by themselves. The optimum medium composition for the first patch of fermentation was: 120 g/L glucose, 3 g/L NH4NO3, 0.14 g/L KH2PO4, 0.16 g/L NaH2PO4 (the concentration ratio of K+ and Na+ was 1:1). After 72 h fermentation, the physical form of Rhizopus oryzae was mostly uniform pellet with the diameter of 1.0-2.0 mm, the concentration of L-lactic acid was 100.8 g/L, and the conversion rate of glucose was 84%. During 16 batches of repeated fermentation, the L-lactic acid level was above 60.0 g/L and the conversion rate of glucose was 75%. The fermentation time of every batch was 24 h.

Cells, Immobilized , Metabolism , Culture Media , Fermentation , Lactic Acid , Rhizopus , Metabolism