ABSTRACT
We synthesized a series of compounds bearing pharmacologically important 1,3,4-oxadiazole and piperidine moieties. Spectral data analysis by 1H-NMR, 13C-NMR, IR and EI-MS was used to elucidate the structures of the synthesized molecules. Docking studies explained the different types of interaction of the compounds with amino acids, while bovine serum albumin (BSA) binding interactions showed their pharmacological effectiveness. Antibacterial screening of these compounds demonstrated moderate to strong activity against Salmonella typhi and Bacillus subtilis but only weak to moderate activity against the other three bacterial strains tested. Seven compounds were the most active members as acetyl cholinesterase inhibitors. All the compounds presented displayed strong inhibitory activity against urease. Compounds 7l, 7m, 7n, 7o, 7p, 7r, 7u, 7v, 7x and 7v were highly active, with respective IC50 values of 2.14±0.003, 0.63±0.001, 2.17±0.006, 1.13±0.003, 1.21±0.005, 6.28±0.003, 2.39±0.005, 2.15±0.002, 2.26±0.003 and 2.14±0.002 µM, compared to thiourea, used as the reference standard (IC50 = 21.25±0.15 µM). These new urease inhibitors could replace existing drugs after their evaluation in comprehensive in vivo studies.
Subject(s)
Computer Simulation/classification , Salmonella typhi/classification , Sulfonamides/adverse effects , Thiourea , Bacillus subtilis/classification , Urease , Serum Albumin, Bovine , Pharmaceutical Preparations/administration & dosage , Cholinesterase Inhibitors/pharmacology , Inhibitory Concentration 50 , Proton Magnetic Resonance Spectroscopy/methods , Data Analysis , Amino Acids/antagonists & inhibitorsABSTRACT
The aim of the present research work was to investigate the enzyme inhibitory potential of some new sulfonamides having benzodioxane and acetamide moieties. The synthesis was started by the reaction of N-2,3-dihydrobenzo[1,4]-dioxin-6-amine (1) with 4-methylbenzenesulfonyl chloride (2) in the presence of 10% aqueous Na2CO3 to yield N-(2,3-dihydrobenzo[1,4]-dioxin-6-yl)-4-methylbenzenesulfonamide (3), which was then reacted with 2-bromo-N-(un/substituted-phenyl)acetamides (6a-l) in DMF and lithium hydride as a base to afford various 2-{2,3-dihydro-1,4-benzodioxin-6-yl[(4-methylphenyl)sulfonyl]amino}-N-(un/substituted-phenyl)acetamides (7a-l). All the synthesized compounds were characterized by their IR and 1H-NMR spectral data along with CHN analysis data. The enzyme inhibitory activities of these compounds were tested against a-glucosidase and acetylcholinesterase (AChE). Most of the compounds exhibited substantial inhibitory activity against yeast a-glucosidase and weak against AChE. The in silico molecular docking results were also consistent with in vitro enzyme inhibition data.
Subject(s)
Sulfonamides/agonists , Cholinesterase Inhibitors , Glycoside Hydrolase Inhibitors , Spectrum Analysis/instrumentation , Acetamides/analysisABSTRACT
Abstract In the study presented here, a new series of 2-furyl(4-{4-[(substituted)sulfonyl]benzyl}-1-piperazinyl)methanone derivatives was targeted. The synthesis was initiated by the treatment of different secondary amines (1a-h) with 4-bromomethylbenzenesulfonyl chloride (2) to obtain various 1-{[4-(bromomethyl)phenyl]sulfonyl}amines (3a-h). 2-Furyl(1-piperazinyl)methanone (2-furoyl-1-piperazine; 4) was then dissolved in acetonitrile, with the addition of K2CO3, and the mixture was refluxed for activation. This activated molecule was further treated with equi-molar amounts of 3a-h to form targeted 2-furyl(4-{4-[(substituted)sulfonyl]benzyl}-1-piperazinyl)methanone derivatives (5a-h) in the same reaction set up. The structure confirmation of all the synthesized compounds was carried out by EI-MS, IR and 1H-NMR spectral analysis. The compounds showed good enzyme inhibitory activity. Compound 5h showed excellent inhibitory effect against acetyl- and butyrylcholinesterase with respective IC50 values of 2.91±0.001 and 4.35±0.004 µM, compared to eserine, a reference standard with IC50 values of 0.04±0.0001 and 0.85±0.001 µM, respectively, against these enzymes. All synthesized molecules were active against almost all Gram-positive and Gram-negative bacterial strains tested. The cytotoxicity of the molecules was also checked to determine their utility as possible therapeutic agents.
Subject(s)
Computer Simulation/statistics & numerical data , Anti-Infective Agents/analysis , Piperazines/analysis , Complement Hemolytic Activity Assay , Cholinesterases/pharmacologyABSTRACT
ABSTRACT Keeping in mind the pharmacological importance of the 1,3,4-oxadiazole moiety, a series of new S-substituted derivatives, 5a-h, of 5-(1-(4-tosyl)piperidin-4-yl)-1,3,4-oxadiazol-2-thiol (3) were synthesized. The reaction of p-toluenesulfonyl chloride (a) and ethyl isonipecotate (b) produced ethyl 1-(4-tosyl)piperidin-4-carboxylate (1) which was further transformed into 1-(4-tosyl)piperidin-4-carbohydrazide (2) by hydrazine hydrate in methanol. Compound 2 was refluxed with CS2 in the presence of KOH to synthesize 5-(1-(4-tosyl)piperidin-4-yl)-1,3,4-oxadiazol-2-thiol (3). The desired compounds, 5a-h, were synthesized by stirring 3 with aralkyl halides, 4a-h, in DMF using NaH as an activator. The structures of synthesized compounds were elucidated by 1H-NMR, IR and EI-MS spectral studies. These compounds were further evaluated for enzyme inhibitory activity against lipoxygenase and alpha-glucosidase, along with antibacterial activity against Gram-negative and Gram-positive bacteria.
RESUMO Tendo em vista a importância farmacológica da porção 1,3,4-oxadiazol, sintetizou-se uma série de novos derivados S-substituídos, 5a-h, de 5-(1-(4-tosi)piperidin-4-il)-1,3,4-oxadiazol-2-tiol (3). A reação do cloreto de p-toluenossulfonila (a), com isonipecotato de (b) etila forneceu 1-(4-tosil)piperidin-4-carboxilato de metila (1), que foi, em seguida, transformado em 1-(4-tosil)piperidin-4-carbo-hidrazida (2) por reação com hidrato de hidrazina em metanol. O composto 2 foi submetido a refluxo com CS2 na presença de KOH para se obter 5-(1-(4-tosil)piperidin-4-il)-1,3,4-oxadiazol-2-tiol (3). Os compostos desejados, 5a-h, foram obtidos por agitação de 3 com haletos de aralquila, 4a-h, em DMF, na presença de NaH. As estruturas dos compostos sintetizados foram elucidadas através de análise dos espectros de 1H-MNR, IR e EI-MS. Estes compostos foram, ainda, avaliados quanto à inibição das enzimas lipoxigenase e alfa-glucosidase, juntamente com a atividade antibacteriana contra bactérias Gram positivas e Gram negativas.
Subject(s)
Oxadiazoles/analysis , Enzyme Inhibitors/analysis , Anti-Bacterial Agents/chemical synthesis , Sulfonamides/analysis , Gram-Negative Bacteria , Gram-Positive BacteriaABSTRACT
abstract A series of N-substituted 2-{[5-(1H-indol-3-ylmethyl)-1,3,4-oxadiazol-2-yl]sulfanyl}acetamides (8a-w) was synthesized in three steps. The first step involved the sequential conversion of 2-(1H-indol-3-yl)acetic acid (1) to ester (2) followed by hydrazide (3) formation and finally cyclization in the presence of CS2 and alcoholic KOH yielded 5-(1H-indole-3-yl-methyl)-1,3,4-oxadiazole-2-thiol (4). In the second step, aryl/aralkyl amines (5a-w) were reacted with 2-bromoacetyl bromide (6) in basic medium to yield 2-bromo-N-substituted acetamides (7a-w). In the third step, these electrophiles (7a-w) were reacted with 4 to afford the target compounds (8a-w). Structural elucidation of all the synthesized derivatives was done by 1H-NMR, IR and EI-MS spectral techniques. Moreover, they were screened for antibacterial and hemolytic activity. Enzyme inhibition activity was well supported by molecular docking results, for example, compound 8q exhibited better inhibitory potential against α-glucosidase, while 8g and 8b exhibited comparatively better inhibition against butyrylcholinesterase and lipoxygenase, respectively. Similarly, compounds 8b and 8c showed very good antibacterial activity against Salmonella typhi, which was very close to that of ciprofloxacin, a standard antibiotic used in this study. 8c and 8l also showed very good antibacterial activity against Staphylococcus aureus as well. Almost all compounds showed very slight hemolytic activity, where 8p exhibited the least. Therefore, the molecules synthesized may have utility as suitable therapeutic agents.
resumo Uma série de acetamidas 2-{[5-(1H-indol-3-ilmetil)-1,3,4-oxadiazol-2-il]sulfanila} N-substituídas (8a-w) foi sintetizada em três fases. A primeira etapa envolveu a conversão sequencial de ácido 2-(1H-indol-3-il)acético (1) a éster (2), seguido por hidrazida (3) e, finalmente, a e ciclização na presença de CS2 e KOH alcoólico produziu 5-(1H-indol-3-il- metil)-1,3,4-oxadiazole-2-tiol (4). Na segunda etapa, aminas arílicas/aralquílicas(5a-w) reagiram com brometo de 2-bromoacetila (6), em meio básico, para se obter acetamidas 2-bromo-N-substituídas (7a-w). Na terceira etapa, estes eletrófilos (7a- w) reagiram com 4, para se obter os compostos alvo (8a-w). A elucidação estrutural de todos os derivados sintetizados foi realizada por 1H-NMR, IR e técnicas de espectrometria de EI-MS. Além disso, eles foram submetidos a triagem de atividade antibacteriana e hemolítica. Análise da inibição enzimática foi bem apoiada pelos resultados de docking molecular. Por exemplo, o composto 8q exibiu melhor potencial inibitório contra α-glicosidase, e os compostos 8g e 8b exibiram, comparativamente, melhor inibição contra butirilcolinesterase (BChE) elipoxigenase (LOX), respectivamente. Do mesmo modo os compostos 8b e 8c mostraram excelente potencial antibacteriano contra SalmonellaTyphi, semelhante ao do ciprofloxacino, antibiótico padrão usado neste estudo. Os compostos 8c e 8l também mostraram excelente potencial antibacteriano contra Staphylococcus aureus . Quase todos os compostos mostraram pequena atividade hemolítica, sendo que o composto 8p apresentou menor atividade. Assim, as moléculas sintetizadas podem ter a sua utilidade como agentes terapêuticos adequados.