Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Add filters

Year range
Braz. j. med. biol. res ; 48(12): 1095-1100, Dec. 2015. graf
Article in English | LILACS | ID: lil-762920


In DNA vaccines, the gene of interest is cloned into a bacterial plasmid that is engineered to induce protein production for long periods in eukaryotic cells. Previous research has shown that the intramuscular immunization of BALB/c mice with a naked plasmid DNA fragment encoding the Mycobacterium leprae 65-kDa heat-shock protein (pcDNA3-Hsp65) induces protection against M. tuberculosis challenge. A key stage in the protective immune response after immunization is the generation of memory T cells. Previously, we have shown that B cells capture plasmid DNA-Hsp65 and thereby modulate the formation of CD8+ memory T cells after M. tuberculosis challenge in mice. Therefore, clarifying how B cells act as part of the protective immune response after DNA immunization is important for the development of more-effective vaccines. The aim of this study was to investigate the mechanisms by which B cells modulate memory T cells after DNA-Hsp65 immunization. C57BL/6 and BKO mice were injected three times, at 15-day intervals, with 100 µg naked pcDNA-Hsp65 per mouse. Thirty days after immunization, the percentages of effector memory T (TEM) cells (CD4+ and CD8+/CD44high/CD62Llow) and memory CD8+ T cells (CD8+/CD44high/CD62Llow/CD127+) were measured with flow cytometry. Interferon γ, interleukin 12 (IL-12), and IL-10 mRNAs were also quantified in whole spleen cells and purified B cells (CD43−) with real-time qPCR. Our data suggest that a B-cell subpopulation expressing IL-10 downregulated proinflammatory cytokine expression in the spleen, increasing the survival of CD4+ TEM cells and CD8+ TEM/CD127+ cells.

Animals , Male , Mice , B-Lymphocytes/immunology , Heat-Shock Proteins/immunology , Immunomodulation/genetics , /genetics , RNA, Messenger/immunology , T-Lymphocyte Subsets/immunology , B-Lymphocytes/metabolism , Flow Cytometry , Gene Expression/genetics , Heat-Shock Proteins/therapeutic use , Immunologic Memory/physiology , Immunophenotyping/classification , Inflammation Mediators/analysis , Interferon-gamma/analysis , /immunology , /analysis , Mice, Knockout , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , RNA, Messenger/genetics , Spleen/cytology , Spleen/immunology , T-Lymphocyte Subsets/classification , Vaccines, DNA/immunology , Vaccines, DNA/therapeutic use
Genet. mol. res. (Online) ; 7(1): 207-216, Jan. 2008. ilus, tab
Article in English | LILACS | ID: lil-553787


The TP53 tumor suppressor gene codifies a protein responsible for preventing cells with genetic damage from growing and dividing by blocking cell growth or apoptosis pathways. A common single nucleotide polymorphism (SNP) in TP53 codon 72 (Arg72Pro) induces a 15-fold decrease of apoptosis-inducing ability and has been associated with susceptibility to human cancers. Recently, another TP53 SNP at codon 47 (Pro47Ser) was reported to have a low apoptosis-inducing ability; however, there are no association studies between this SNP and cancer. Aiming to study the role of TP53 Pro47Ser and Arg72Pro on glioma susceptibility and oncologic prognosis of patients, we investigated the genotype distribution of these SNPs in 94 gliomas (81 astrocytomas, 8 ependymomas and 5 oligodendrogliomas) and in 100 healthy subjects by the polymerase chain reaction-restriction fragment length polymorphism approach. Chi-square and Fisher exact test comparisons for genotype distributions and allele frequencies did not reveal any significant difference between patients and control groups. Overall and disease-free survivals were calculated by the Kaplan-Meier method, and the log-rank test was used for comparisons, but no significant statistical difference was observed between the two groups. Our data suggest that TP53 Pro47Ser and Arg72Pro SNPs are not involved either in susceptibility to developing gliomas or in patient survival, at least in the Brazilian population.

Humans , Male , Female , Child, Preschool , Child , Adolescent , Adult , Middle Aged , Glioma/genetics , Polymorphism, Single Nucleotide , /genetics , Apoptosis/genetics , Brazil , Case-Control Studies , Gene Frequency , Genetic Predisposition to Disease , Genotype , Glioma/etiology , Glioma/mortality , Prognosis , Survival Analysis