ABSTRACT
The infection status of zoonotic trematode metacercariae (ZTM) was investigated in total 568 freshwater fishes (19 species) from the irrigation canal of Togyo-jeosuji (Reservoir) in Cheorwon-gun, Gangwon-do, the Republic of Korea for 3 years (2018-2020). All fishes were examined using the artificial digestion method. The metacercariae of Clonorchis sinensis (CsMc) were detected in 180 (43.8%) out of 411 fish of positive species, and their infection intensity was 38 per fish infected (PFI). Especially, in 2 fish species, i.e., Pseudorasbora parva and Puntungia herzi, the prevalence was 82.1% and 31.3%, and the infection intensity with CsMc was 88 and 290 PFI, respectively. Metagonimus spp. metacercariae (MsMc) were found in 403 (74.1%) out of 544 fish of positive species, and their infection intensity was 62 PFI. In the pale chub, Zacco platypus, the prevalence of MsMc was 98.6%, and their infection intensity was 144 PFI. Centrocestus armatus metacercariae were detected in 171 (38.9%) out of 440 fish of positive species, and their infection intensity was 1,844 PFI. Echinostoma spp. metacercariae were found in 94 (19.6%) out of 479 fish of positive species, and their infection intensity was 3 PFI. Metorchis orientalis metacercariae were detected in 43 (29.3%) out of 147 fish of positive species, and their infection intensity was 4 PFI. By the present study, it has been confirmed that some species of ZTM, including CsMc and MsMc, are prevalent in fishes from the irrigation canal of Togyo-jeosuji in Cheorwon-gun, Gangwon-do, Korea.
ABSTRACT
The infection status of zoonotic trematode metacercariae (ZTM) was investigated in total 568 freshwater fishes (19 species) from the irrigation canal of Togyo-jeosuji (Reservoir) in Cheorwon-gun, Gangwon-do, the Republic of Korea for 3 years (2018-2020). All fishes were examined using the artificial digestion method. The metacercariae of Clonorchis sinensis (CsMc) were detected in 180 (43.8%) out of 411 fish of positive species, and their infection intensity was 38 per fish infected (PFI). Especially, in 2 fish species, i.e., Pseudorasbora parva and Puntungia herzi, the prevalence was 82.1% and 31.3%, and the infection intensity with CsMc was 88 and 290 PFI, respectively. Metagonimus spp. metacercariae (MsMc) were found in 403 (74.1%) out of 544 fish of positive species, and their infection intensity was 62 PFI. In the pale chub, Zacco platypus, the prevalence of MsMc was 98.6%, and their infection intensity was 144 PFI. Centrocestus armatus metacercariae were detected in 171 (38.9%) out of 440 fish of positive species, and their infection intensity was 1,844 PFI. Echinostoma spp. metacercariae were found in 94 (19.6%) out of 479 fish of positive species, and their infection intensity was 3 PFI. Metorchis orientalis metacercariae were detected in 43 (29.3%) out of 147 fish of positive species, and their infection intensity was 4 PFI. By the present study, it has been confirmed that some species of ZTM, including CsMc and MsMc, are prevalent in fishes from the irrigation canal of Togyo-jeosuji in Cheorwon-gun, Gangwon-do, Korea.
ABSTRACT
PURPOSE: The aim of the present study was to examine the effect of the root cortex of Paeonia suffruticosa, an anti-inflammatory folk medicine, on nitric oxide (NO) synthesis and the induction of inducible NO synthase (iNOS) gene expression in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. MATERIALS AND METHODS: We studied the effects of the RAW264.7 macrophage cell line of the extract from the root cortex of P. suffruticosa and NO with western blot and northern blot assays. RESULTS: We found that treatment of RAW264.7 macrophages with the ethylacetate fraction of the ethanolic extract of the root cortex of P. suffruticosa inhibits LPS-induced synthesis of NO in vitro. This effect is dose-dependent and appears to involve the suppression of iNOS gene expression, thereby reducing excessive NO synthesis in LPS-stimulated RAW264.7 macrophages. CONCLUSIONS: As NO is a pro-inflammatory molecule and iNOS inhibitors may have therapeutic potential, our findings may explain the anti-inflammatory property of the root cortex of P. suffruticosa. This root has been used in oriental folk medicine for the treatment of various inflammatory diseases with relatively little knowledge regarding its mechanism of anti-inflammatory action.