Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Article in Chinese | WPRIM | ID: wpr-879052

ABSTRACT

This study aimed to investigate the effect of serum containing ginseng and Moutan Cortex on human umbilical vein endothelial cells(HUVEC) injured with hydrogen peroxide(H_2O_2). HUVEC injured with H_2O_2 were divided into 6 groups, namely blank group, model group, ginsenoside(TGG) group, total glucosides of Moutan Cortex(TGM) group, paeonol(P) group and TGG+TGM+P group. After 24 hours of co-culture with H_2O_2, the activities of succinate dehydrogenase(SDH) and Ca~(2+)-Mg~(2+)-ATP were detected by microenzyme labeling. The apoptosis rate, intracellular Ca~(2+) concentration, reactive oxygen species(ROS) and mitochondrial membrane potential(JC-1) were detected by flow cytometry. The expressions of mitochondrial apoptosis pathway-related proteins Bax, Bcl-2, cytochrome C, caspase-3 and caspase-9 were detected by Western blot. The results showed that H_2O_2 could significantly damage HUVEC, decrease the activity of SDH and Ca~(2+)-Mg~(2+)-ATP(P<0.01), while could increase the apoptosis+necrosis rate, JC-1 decline rate, ROS increase rate and Ca~(2+) concentration increase rate(P<0.01). Serum containing ginseng and Moutan Cortex could increase the activities of SDH and Ca~(2+)-Mg~(2+)-ATP to different degrees, decrease the apoptosis+necrosis rate, JC-1 decline rate, ROS increase rate and Ca~(2+) concentration increase rate(P<0.05 or P<0.01), and down-regulate the protein expressions of Bax, caspase-3, caspase-9, cytochrome C, and up-regulate the protein expression of Bcl-2. The results showed that serum containing ginseng and Moutan Cortex has a protective effect on vascular endothelial cell injury induced by ROS, and its mechanism may be related to the improvement of mitochondrial function and the inhibition of the activation of mitochondrial apoptosis pathway.


Subject(s)
Apoptosis , Drugs, Chinese Herbal/pharmacology , Human Umbilical Vein Endothelial Cells , Humans , Paeonia , Panax , Reactive Oxygen Species
SELECTION OF CITATIONS
SEARCH DETAIL