Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Add filters

Year range
Article in Chinese | WPRIM | ID: wpr-351303


Sodium houttuyfonate (SH) is a derivative of effective component of a Chinese material medica, Houttuynia cordata, which is applied in anti-infection of microorganism. But, the antimicrobial mechanisms of SH still remain unclear. Here, we firstly discovered that SH effectively inhibits the three types of virulence related motility of.Pseudomonas aeruginosa, i.e., swimming, twitching and swarming. The plate assay results showed that the inhibitory action of SH against swimming and twitching in 24 h and swarming in 48 h is dose-dependent; and bacteria nearly lost all of the motile activities under the concentration of 1 x minimum inhibitory concentration (MIC) (512 mg x L(-1) same as azithromycin positive group (1 x MIC, 16 mg x L(-1)). Furthermore, we found that the expression of structural gene flgB and pilG is down-regulated by SH, which implies that inhibitory mechanism of SH against motility of P. aeruginosa may be due to the inhibition of flagella and pili bioformation of P. aeruginosa by SR Therefore, our presented results firstly demonstrate that SH effectively inhibits the motility activities of P. aeruginosa, and suggest that SH could be a promising antipseudomonas agents in clinic.

Alkanes , Pharmacology , Anti-Bacterial Agents , Pharmacology , Bacterial Proteins , Genetics , Metabolism , Biofilms , Drugs, Chinese Herbal , Pharmacology , Fimbriae, Bacterial , Genetics , Metabolism , Houttuynia , Chemistry , Pseudomonas aeruginosa , Cell Biology , Genetics , Virulence , Sulfites , Pharmacology , Virulence
Acta Physiologica Sinica ; (6): 567-576, 2009.
Article in English | WPRIM | ID: wpr-337789


The aim of the present study was to investigate the effects of quercetin on colon contractility and voltage-dependent Ca(2+) channels in the single smooth muscle cell isolated from the proximal colon of guinea-pig and to clarify whether its effect on L-type Ca(2+) current (I(Ca,L)) would be related to its myorelaxing properties. Colon smooth muscle strips were used to take contractile tension recordings. Smooth muscle cells were freshly isolated from the proximal colon of guinea-pig by means of papain treatment. I(Ba,L) (barium instead of calcium as current carrier) was measured by using whole-cell patch-clamp techniques. The results showed that quercetin relaxed colon muscle strips in a concentration-dependent manner and antagonized the contractile effect of acetylcholine and neostigmine. Preincubation with indomethcin [cyclooxygenase (COX) inhibitor] and methylene blue [guanylate cyclase (GC) inhibitor] significantly attenuated the relaxing effect of quercetin, respectively. Quercetin increased I(Ba,L) in a concentration- [EC(50)= (7.59+/-0.38) mumol/L] and voltage-dependent pattern, and shifted the maximum of the current-voltage curve by 10 mV in the depolarizing direction without modifying the threshold potential for Ca(2+) influx. Quercetin shifted the steady-state inactivation curve toward more positive potentials by approximately 3.75 mV without affecting the slope of activation and inactivation curve. H-89 (PKA inhibitor) abolished quercetin-induced I(Ba,L) increase, while cAMP enhanced the quercetin-induced I(Ba,L) increase. The patch-clamp results proved that quercetin increased I(Ba,L) via PKA pathway. It is therefore suggested that the relaxing effect of quercetin attributes to the interaction of GC and COX stimulation, as well as the antagonism effect on acetylcholine, which hierarchically prevails over the increase in the Ca(2+) influx to be expected from I(Ca,L) stimulation.

Animals , Calcium Channels, L-Type , Metabolism , Cells, Cultured , Colon , Guinea Pigs , Muscle Contraction , Myocytes, Smooth Muscle , Patch-Clamp Techniques , Quercetin , Pharmacology
Acta Physiologica Sinica ; (6): 285-291, 2009.
Article in Chinese | WPRIM | ID: wpr-302450


To investigate the characteristics of large-conductance calcium-activated potassium channels (BK(Ca)) and the effect of hydrogen peroxide (H2O2) on BK(Ca) in guinea-pig proximal colon smooth muscle cells, single smooth muscle cells of guinea-pig colon were enzymatically isolated in low calcium solution containing papain (3 mg/mL), DTT (2 mg/mL), and bovine serum albumin (BSA, 2 mg/mL). Tissues were incubated at 36 degrees C in enzyme solution for 15 min and were then suspended in enzyme-free low calcium solution. Inside-out single channel recording technique was used to record BK(Ca) current. The intracellular (bath) and microelectrode solution both contained symmetrical high potassium. The BK(Ca) in guinea-pig colon smooth muscle cell possesses: 1) voltage-dependence, 2) high selectivity for potassium ion, 3) large conductance (223.7 pS+/-9.2 pS), 4) dependence of [Ca(2+)](i). Intracellular application of H2O2 decreased the open probability (P(o)) of BK(Ca) at low concentration (</=1 mmol/L), and increased or decreased P(o) of BK(Ca) at high concentration (5 mmol/L), without affecting the unitary conductance. The effects of H2O2 were reversed by reducing agent dithiothreitol (DTT). Similarly, cysteine specific oxidizing agent, DTNB, also increased or decreased P(o) of BK(Ca) and DTT partially reversed the effect of DTNB. It is thus suggested that H2O2 and DTNB may modulate P(o) of BK(Ca) via the oxidation of cysteine residue.

Animals , Colon , Cell Biology , Guinea Pigs , Hydrogen Peroxide , Pharmacology , Large-Conductance Calcium-Activated Potassium Channels , Physiology , Myocytes, Smooth Muscle , Physiology , Oxidation-Reduction