ABSTRACT
With the escalation of plastic bans and restrictions, bio-based plastics, represented by polylactic acid (PLA), have become a major alternative to traditional plastics in the current market and are unanimously regarded as having potential for development. However, there are still several misconceptions about bio-based plastics, whose complete degradation requires specific composting conditions. Bio-based plastics might be slow to degrade when it is released into the natural environment. They might also be harmful to humans, biodiversity and ecosystem function as traditional petroleum-based plastics do. In recent years, with the increasing production capacity and market size of PLA plastics in China, there is an urgent need to investigate and further strengthen the management of the life cycle of PLA and other bio-based plastics. In particular, the in-situ biodegradability and recycling of hard-to-recycle bio-based plastics in the ecological environment should be focused. This review introduces the characteristics, synthesis and commercialization of PLA plastics, summarizes the current research progress of microbial and enzymatic degradation of PLA plastics, and discusses their biodegradation mechanisms. Moreover, two bio-disposal methods against PLA plastic waste, including microbial in-situ treatment and enzymatic closed-loop recycling, are proposed. At last, the prospects and trends for the development of PLA plastics are presented.
Subject(s)
Humans , Ecosystem , Biodegradable Plastics , Polyesters , Biodegradation, EnvironmentalABSTRACT
Polyurethane (PUR) plastics is widely used because of its unique physical and chemical properties. However, unreasonable disposal of the vast amount of used PUR plastics has caused serious environmental pollution. The efficient degradation and utilization of used PUR plastics by means of microorganisms has become one of the current research hotspots, and efficient PUR degrading microbes are the key to the biological treatment of PUR plastics. In this study, an Impranil DLN-degrading bacteria G-11 was isolated from used PUR plastic samples collected from landfill, and its PUR-degrading characteristics were studied. Strain G-11 was identified as Amycolatopsis sp. through 16S rRNA gene sequence alignment. PUR degradation experiment showed that the weight loss rate of the commercial PUR plastics upon treatment of strain G-11 was 4.67%. Scanning electron microscope (SEM) showed that the surface structure of G-11-treated PUR plastics was destroyed with an eroded morphology. Contact angle and thermogravimetry analysis (TGA) showed that the hydrophilicity of PUR plastics increased along with decreased thermal stability upon treatment by strain G-11, which were consistent with the weight loss and morphological observation. These results indicated that strain G-11 isolated from landfill has potential application in biodegradation of waste PUR plastics.
Subject(s)
Plastics/metabolism , Polyurethanes/chemistry , RNA, Ribosomal, 16S , Bacteria/genetics , Biodegradation, EnvironmentalABSTRACT
With the transformation and revolution of the global plastics recycling system, recycling and upcycling of mixed plastics waste not only reduces the carbon emissions of plastics during its life cycle, but also addresses its potential ecological and environmental hazards. This article summarizes an international cooperation project, "MIXed plastics biodegradation and UPcycling using microbial communities" (MIX-UP) which was funded by the National Natural Science Foundation of China and the European Union (NSFC-EU) in 2019. The consortium of MIX-UP consists of 14 partners from European Union and China. Focusing on the global issue of "plastics pollution", this Sino-European MIX-UP project took the mixed waste of petroleum-based plastics (PP, PE, PUR, PET and PS) and bio-based plastics (PLA and PHA) as starting materials for biotechnological conversion into value-added, sustainable biomaterials. MIX-UP has three subprojects: 1) identification of plastics biodegradation pathway and design & engineering of key degrading elements, 2) construction and functional regulation of microbial consortia/enzyme cocktails with high-efficiency for degradation of plastics mixtures, 3) strategy of design and utilization of plastics degradation products for production of high value materials. Through NSFC-EU complementary and cross-disciplinary cooperation, MIX-UP proposes the engineering of a new-to-nature biological route for upcycling, a low carbon and sustainable bio-treatment that is different from the traditional physico-chemical treatment, which will empower the recycling industry to a new dimension. The implementation of the project will not only help to promote innovation and development in the field of biotechnology in China, but also contribute to the achievement of China's carbon neutral goal.
Subject(s)
Biodegradation, Environmental , Biotechnology , Carbon , European Union , Microbiota , PlasticsABSTRACT
Biodegradation of polyurethane (PUR) pollutants by microorganisms has received widespread attention currently. Identification of microorganisms capable of efficiently degrading PUR plastics is a key point. In this study, a strain P10 capable of degrading PUR was isolated from the plastic wastes, and identified as a bacterium belonging to the genus of Brevibacillus based on colony morphology and 16S rDNA phylogenetic analysis. Brevibacillus sp. P10 was capable of degrading 71.4% of waterborne polyurethane (Impranil DLN) after 6 days growth in MSM medium with DLN as a sole carbon source. In addition, strain P10 can use commercial PUR foam as the sole carbon source for growth. Brevibacillus sp. P10 can degrade 50 mg PUR foam after 6 days growth in MSM medium supplemented with 5% (V/V) LB after optimization of degradation conditions. This indicates that Brevibacillus sp. P10 has potential to be used in biodegradation of PUR waste.
Subject(s)
Bacteria , Biodegradation, Environmental , Phylogeny , PolyurethanesABSTRACT
Consolidated bioprocessing (CBP) is a multi-step process in a bioreactor, which completes hydrolase production, enzymatic hydrolysis, and microbial fermentation. It is considered to be the most promising process for the production of second-generation biofuels because of its simple steps and low cost. Due to the complexity of lignocellulose degradation and the butanol synthesis pathway, few wild microorganisms can directly utilize lignocellulose to synthesize butanol. With the development of synthetic biology, single-bacterium directly synthesizes butanol using lignocellulose by introducing a butanol synthesis pathway in the cellulolytic Clostridium. However, there are still some problems such as heavy metabolic load of single bacterium and low butanol yield. Co-culture can relieve the metabolic burden of single bacterium through the division of labor in different strains and can further improve the efficiency of butanol synthesis. This review analyzes the recent research progress in the synthesis of biobutanol using lignocellulose by consolidated bioprocessing from both the single-bacterium strategy and co-culture strategy, to provide a reference for the research of butanol and other biofuels.