Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add filters








Year range
1.
Article in English | WPRIM | ID: wpr-939791

ABSTRACT

OBJECTIVE@#To explore the synergic mechanism of ginsenoside Rg1 (Rg1) and aconitine (AC) by acting on normal neonatal rat cardiomyocytes (NRCMs) and pentobarbital sodium (PS)-induced damaged NRCMs.@*METHODS@#The toxic, non-toxic, and effective doses of AC and the most suitable compatibility concentration of Rg1 for both normal and damaged NRCMs exposed for 1 h were filtered out by 3- (4,5)-dimethylthiahiazo (-z-y1)-3,5-diphenytetrazoliumromide, respectively. Then, normal NRCMs or impaired NRCMs were treated with chosen concentrations of AC alone or in combination with Rg1 for 1 h, and the cellular activity, cellular ultrastructure, apoptosis, leakage of acid phosphatase (ACP) and lactate dehydrogenase (LDH), intracellular sodium ions [Na+], potassium ions [K+] and calcium ions [Ca2+] levels, and Nav1.5, Kv4.2, and RyR2 genes expressions in each group were examined.@*RESULTS@#For normal NRCMs, 3000 µ mol/L AC significantly inhibited cell viability (P<0.01), promoted cell apoptosis, and damaged cell structures (P<0.05), while other doses of AC lower than 3000 µ mol/L and the combinations of AC and Rg1 had little toxicity on NRCMs. Compared with AC acting on NRCMs alone, the co-treatment of 3000 and 10 µ mol/L AC with 1 µ mol/L Rg1 significantly decreased the level of intracellular Ca2+ (P<0.01 or P<0.05), and the co-treatment of 3000 µ mol/L AC with 1 µ mol/L Rg1 significantly decreased the level of intracellular Ca2+ via regulating Nav1.5, RyR2 expression (P<0.01). For damaged NRCMs, 1500 µ mol/L AC aggravated cell damage (P<0.01), and 0.1 and 0.001 µ mol/L AC showed moderate protective effect. Compared with AC used alone, the co-treatment of Rg1 with AC reduced the cell damage, 0.1 µ mol/L AC with 1 µ mol/L Rg1 significantly inhibited the level of intracellular Na+ (P<0.05), 1500 µ mol/L AC with 1 µ mol/L Rg1 significantly inhibited the level of intracellular K+ (P<0.01) via regulating Nav1.5, Kv4.2, RyR2 expressions in impaired NRCMs.@*CONCLUSION@#Rg1 inhibited the cardiotoxicity and enhanced the cardiotonic effect of AC via regulating the ion channels pathway of [Na+], [K+], and [Ca2+].


Subject(s)
Aconitine/pharmacology , Animals , Apoptosis , Cardiotonic Agents/pharmacology , Cardiotoxicity/drug therapy , Cell Survival , Ginsenosides/pharmacology , Rats
2.
Article in Chinese | WPRIM | ID: wpr-771506

ABSTRACT

In this study,transcriptomics technique was used to investigate the mechanism of action of Aconiti Lateralis Radix Praeparata on acute heart failure rats induced by propafenone hydrochloride.First,rats were randomly divided into normal group,model group and administration group(1.25,2.5,5 g·kg-1).A rat with acute heart failure was constructed by intravenous femoral administration of proparone hydrochloride.The changes of heart rate,+dp/dtmaxand-dp/dtmaxat 5,10,20,30 and 60 min were recorded.Then another group of rats were given the same drug delivery method.In another group of animals,serum TNF-α could be determined by ELISA with the same dosage method.High-throughput sequencing technology was used to detect all gene expression differences in cardiac tissue samples of rats with acute heart failure.Through functional annotation and enrichment analysis,gene expression signaling pathways of rats with acute heart failure and rats with post-administration heart failure were screened out.The results showed that heart rate and LV+dp/dtmaxand LV-dp/dtmaxwere significantly decreased in the model group(P<0.05),while heart rate and LV+dp/dtmax and LV-dp/dtmaxwere significantly increased in the drug group(P<0.05,P<0.01).Moreover,ANP,BNP and TNF-α in acute heart failure rats was significantly decreased in high-dose aconite decoction group(P<0.05).Transcriptomics analysis showed that the mechanism of action was mainly related to activation of PI3 K-AKT signaling pathway and Jak-STAT pathway.Compared with the model group,aconite decoction up-regulated the expression of phosphatidylinostol 3-kinase(PI3 K),lysophosphatidic acid(LAP3),Bcl-3 and STAT genes,and down-regulated the expression of integrin(ITGA),nuclear orphan receptor(Nur77) genes.It could be concluded that the mechanism of aconite in treating acute heart failure rats may be related to the regulation of the PI3 k-Akt/Jak-STAT pathway.


Subject(s)
Aconitum , Chemistry , Animals , Drugs, Chinese Herbal , Pharmacology , Heart , Heart Failure , Drug Therapy , Metabolism , Myocardium , Metabolism , Random Allocation , Rats , Signal Transduction , Transcriptome
3.
Chinese Traditional Patent Medicine ; (12): 1242-1248, 2018.
Article in Chinese | WPRIM | ID: wpr-710287

ABSTRACT

AIM To observe the oxidant stress and opoptotic effects of anisodine hydromide (AH) on chronic cerebral hypoperfusion (CCH) rats.METHODS In vivo CCH models were established in adult male SpragueDawley rats by permanent ligation of bilateral common carotid arteries [two-vessel occlusion (2-VO)] surgery.Rats were randomly divided into six groups,sham group,model group,positive group of n-butylphthalide and sodium chloride injection,and AH groups (1.2 mg/kg high-dose group,0.6 mg/kg medium-dose group,and 0.3 mg/kg low-dose group).Antioxidant indices including the activity of SOD,CAT,LDH and iNOS and the content of GSH and NO were measured.In the in vitro trial,PC12 cells were divided into control group,model group,positive group of n-butylphthalide,and AH groups (100 μmol/L high-dose group,50 μmol/L mediumdose group,and 25 μmol/L low-dose group),and the hypoxic models were established by treating PC12 cells with CoCl2.The cells had their release of NO and LDH detected,their cellular apoptosis determined by Hochest 33342 fluorescence staining,and the expression of P53 protein identified by IF (immunofluorescence) and Western blotting method.RESULTS The in vivo trial revealed AH's enhancement in serum SOD activity and inhibition in serum iNOS activityof the CCH rats,and its power in the cerebral GSH and LDH release reduction.The in vitro trial showed the resultant lower LDH and NO release,decreased number of neuro-apoptosis,and inhibited P53 pro tein expression after AH intervention.CONCLUSION The antioxidant and antiapoptotic effects of AH on CCH rats may be associated with down regulation of P53 protein.

4.
Article in Chinese | WPRIM | ID: wpr-272693

ABSTRACT

Essential oil is the low polar and volatile components distilled or extracted from Ligusticum chuanxiong, the dry root of perennial herb L. chuanxiong, which has proven to be one of the main biological active ingredients of L. chuanxiong. Studies suggested that essential oil of L. chuanxiong mainly contains phthalide, terpene alcohols and fatty acids compounds. Different regions or varied extraction technology had influences on the type and contents of compound in essential oil of L. chuanxiong and the total yield efficiency of essential oil, while the differences among the distribution of compounds leads to the variant pharmacological function of essential oil of L. chuanxiong. Researches confirmed that essential oil of L. chuanxiong has kinds of pharmacological activities such as sedation, analgesia, improve function of blood vessels, protected nerve cells and fever-reducing, all these benefits were verified by experiment studies in vivo and some of which were used as therapies in treating migraine, the underlining mechanisms include anti-inflammation, apoptosis pathway and studies found that essential oil of L. chuanxiong possessed very low acute and chronic toxicity at the same time, revealed its great value of development and utilization in clinical applications. Recent studies light some problems such as lack of quality standards and the research of relationship between efficacy and material. The key to apply the usage of essential oil of L. chuanxiong locate in its substantial basis research, the establishment of the quality standards and the joint research institute, more study should work on these fields.

5.
Article in Chinese | WPRIM | ID: wpr-307114

ABSTRACT

An MSAP analysis method was established for detecting DNA methylation of Aconitum carmichaeli leaves, and the DNA methylation of different leaf shapes and different leaf position was analyzed by MSAP. The study made experiments on the leaves of different position of mosaic and moxa leaf type A. carmichaeli, researched the effects of restriction digestion of genomic DNA by using two restriction enzymes, screened the suitable selective amplification primers, and analyzed the methylation differences of leaves by calculating the 6% acrylamide gel electrophoresis bands and lane. The best reaction system of MSAP was obtained, under the conditions of 37 ℃, the 16 h incubated time was more suitable for 150 ng DNA, and 25 pairs of selective amplification primers were selected from 256 pairs. Totally, 273 electrophoresis bands were obtained by 25 pairs of selective primers, including 228 non methylation or single chain methylation bands,27 double chain methylation bands,and 18 single stranded methylation bands, the total methylation rate was 16.48%. The methylation rate was slightly different in mosaic and moxa leaf type A. carmichaeli leaf, which were 15.36%, 14.34%, respectively, and article 8, article 6 nucleotide fragments of genome methylation modification differences were obtained, accounted for 3%, 2.26% of the total number of bands. Based on this study it can provide new ideas for molecular identification, breeding and cultivation, and genetic evolution of A. carmichaeli.

6.
Article in Chinese | WPRIM | ID: wpr-341854

ABSTRACT

Chemical constituents of Leonurus japonicus were isolated and purified by a combination of various chromatographic techniques including column chromatography over silica gel, Sephadex LH-20, MCI, and Rp C18. Structures of the isolates were determined by spectroscopic analysis as 10 coumarins: bergapten (1), xanthotoxin (2), isopimpinellin (3), isogosferal (4), imperatorin (5), meransin hydrate(6), isomeranzin(7), murrayone(8) , auraptenol(9), and osthol(10). In addition to compound 9, the others were isolated from the genus Leonurus for the first time. In the in vitro assay, compounds 4 and 8 significantly inhibited the abnormal increase of platelet aggregation induced by ADP.


Subject(s)
Blood Platelets , Coumarins , Chemistry , Pharmacology , Leonurus , Chemistry , Platelet Aggregation , Platelet Aggregation Inhibitors , Chemistry , Pharmacology
7.
Article in Chinese | WPRIM | ID: wpr-274729

ABSTRACT

<p><b>OBJECTIVE</b>To study the role of RpoE and RpoS on the influence of the metabolism and growth of bacterial under hyperosmotic stress.</p><p><b>METHODS</b>The rpoS/rpoE double deletion mutant of Salmonella enterica serovar typhi (S. typhi) was prepared by homologous recombination through the suicide plasmid mediated. The recombination was visualized by PCR. Growth curves were drawn by using photometric value A600 as the ordinate and cultivation time as abscissa. The survival abilities of bacterial were compared under hyperosmotic stress. Statistical differences of early logarithmic growth stage (4 h) and laters logarithmic growth stage (12 h) were analyzed by one-way ANOVA. The expression difference of metabolism related genes of wild-type and mutant strains of S. Typhi incubated under hyperosmotic stress were investigated by Salmonella genomic DNA microarray. Real-time quantitative PCR (qRT-PCR) was performed to validate the results of microarray assay in some selected genes.</p><p><b>RESULTS</b>The rpoS/rpoE double deletion mutant of S. Typhi was successfully generated. The analysis of growth curve showed that the 4-hour and 12-hour A600 values were separately 0.503 ± 0.018 and 2.060 ± 0.112 in rpoS deletion mutant strains, 0.293 ± 0.053 and 1.933 ± 0.115 in rpoE deletion mutant strains, and 0.051 ± 0.007 and 0.963 ± 0.111 in rpoS/rpoE double deletion mutant strains; all of which were lower than the values of wild-type strains, who were 0.725 ± 0.097 and 2.496 ± 0.171, respectively. The difference were statistically significant (P < 0.05). The genomic DNA microarray revealed that 42 genes relevant with bacterial metabolism were influenced by RpoE and RpoS. Results of qRT-PCR showed that the expression values of rpsE, rbsK, nusG and etuB in rpoS deletion mutant strains were (1.86 ± 0.14)×10(6), (1.37 ± 0.11)×10(6), (2.72 ± 0.58)×10(6) and (8.27 ± 1.01)×10(6) copies/µg, respectively; while those in rpoE deletion mutant strains were (2.19 ± 0.17)×10(6), (1.51 ± 0.12)×10(6), (2.73 ± 0.57)×10(6) and (9.63 ± 1.42)×10(6) copies/µg, respectively. Compared with the values in wild-type strains, which were separately (1.94 ± 0.10)×10(6), (1.52 ± 0.11)×10(6), (2.39 ± 0.52)×10(6) and (10.83 ± 1.52)×10(6) copies/µg, the differences was not statistical significance (P > 0.05). However, compared with the values in rpoS/rpoE double mutant strains, which were separately (5.64 ± 0.59)×10(6), (4.17 ± 0.40)×10(6), (9.44 ± 1.22)×10(6) and (2.95 ± 0.88)×10(6) copies/µg, the difference was significant (P < 0.05).</p><p><b>CONCLUSION</b>RpoE and RpoS could influence the expression of lots of metabolism genes. Together, they regulated the metabolism and growth of S. Typhi under hyperosmotic stress.</p>


Subject(s)
Bacterial Proteins , Genetics , Gene Deletion , Osmosis , Salmonella typhi , Genetics , Metabolism , Sigma Factor , Genetics , Stress, Physiological
SELECTION OF CITATIONS
SEARCH DETAIL