ABSTRACT
China is rich in antimony, boron, and vanadium mineral resources, which have been detected in environmental water bodies and drinking water. During the revision process of the "Standards for Drinking Water Quality (GB5749-2006)", research and evaluation are focused on three indicators: antimony, boron and vanadium. Vanadium is added and the limit value of boron is adjusted. This study reviews and discusses the technical contents related to the revision of the antimony, boron and vanadium, including the environmental presence levels, exposure status, health effects, and the revision of the standard limits of these three indicators. Suggestions are also made for the implementation of this standard.
Subject(s)
Humans , Antimony , Boron/analysis , China , Drinking Water , Vanadium , Water Pollutants, Chemical/analysisABSTRACT
The establishment of limit values for standards of drinking water quality is an important and complex process. This study systematically introduced the methodology of the establishment of standard limit values for drinking water quality and elaborated on the workflow of setting limit values of water quality indicators, principles and methods of selecting water quality indicators, derivation of safety reference values, and establishment of limit values. It also aimed to provide reference and support for the future revision of relevant standards.
Subject(s)
Humans , Water Supply , Drinking Water , Reference Standards , Water Quality , Water Pollutants, Chemical/analysisABSTRACT
Climate change has been referred to as one of the greatest threats to human health, with reports citing likely increases in extreme meteorological events. In this study, we estimated the relationships between temperature and outpatients at a major hospital in Qingdao, China, during 2015-2017, and assessed the morbidity burden. The results showed that both low and high temperatures were associated with an increased risk of outpatient visits. High temperatures were responsible for more morbidity than low temperatures, with an attributed fraction (AF) of 16.86%. Most temperature-related burdens were attributed to moderate cold and hot temperatures, with AFs of 5.99% and 14.44%, respectively, with the young (0-17) and male showing greater susceptibility. The results suggest that governments should implement intervention measures to reduce the adverse effects of non-optimal temperatures on public health-especially in vulnerable groups.