Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Article in Chinese | WPRIM | ID: wpr-920744

ABSTRACT

Objective To identify the differentially expressed proteins in different liver tissues in the mouse model of alveolar echinococcosis using high-resolution mass spectrometry with data independent acquisition (DIA), and to identify the key proteins contributing to the pathogenesis of alveolar echinococcosis. Methods Protoscoleces were isolated from Microtus fuscus with alveolar echinococcosis and the experimental model of alveolar echinococcosis was established in female Kunming mice aged 6 to 8 weeks by infection with Echinococcus multilocularis protoscoleces. Mice were divided into the experimental and control groups, and animals in the experimental group was injected with approximately 3 000 protoscoleces, while mice in the control group were injected with the same volume of physiological saline. Mouse liver specimens were sampled from both groups one year post-infection and subjected to pathological examinations. In addition, the lesions (the lesion group) and peri-lesion specimens (the peri-lesion group) were sampled from the liver of mice in the experimental group and the normal liver specimens (the normal group) were sampled from mice in the control group for DIA proteomics analysis, and the differentially expressed proteins were subjected to bioinformatics analysis. Results A total of 1 020 differentially expressed proteins were identified between the lesion group and the normal group, including 671 up-regulated proteins and 349 down-regulated proteins, and 495 differentially expressed proteins were identified between the peri-lesion group and the normal group, including 327 up-regulated proteins and 168 down-regulated proteins. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis revealed that these differentially expressed proteins were involved in peroxisome, peroxisome proliferator-activated receptor (PPAR) and fatty acid degradation pathways, and the peroxisome and PPAR signaling pathways were found to correlate with liver injury. Several differentially expressed proteins that may contribute to the pathogenesis of alveolar echinococcosis were identified in these two pathways, including fatty acid binding protein 1 (Fabp1), Acyl-CoA synthetase long chain family member 1 (Acsl1), Acyl-CoA oxidase 1 (Acox1), Enoyl-CoA hydratase and 3-hydroxyacyl CoA dehydrogenase (Ehhadh) and Acetyl-Coenzyme A acyltransferase 1B (Acaa1b), which were down-regulated in mice in the experimental group. Conclusion A large number of differentially expressed proteins are identified in the liver of the mouse model of alveolar echinococcosis, and Fabp1, Acsl1, Acox1, Ehhadh and Acaa1b may contribute to the pathogenesis of alveolar echinococcosis.

2.
Article in Chinese | WPRIM | ID: wpr-920743

ABSTRACT

Objective To identify the differentially expressed proteins in different liver tissues in the mouse model of cystic echinococcosis (CE), so as to provide insights into the research and development of therapeutic drugs targeting CE. Methods Female Kunming mice at ages of 6 to 8 weeks were randomly assigned into the CE group and the control group. Mice in the CE group were intraperitoneally infected with 2 000 Echinococcus multilocularis protoscoleces, while mice in the control group were injected with the same volume of physiological saline. All mice in both groups were sacrificed after breeding for 350 d, and the lesions (the lesion group) and peri-lesion specimens (the peri-lesion group) were sampled from the liver of mice in the CE group and the normal liver specimens (the normal group) were sampled from mice in the control group for data independent acquisition (DIA) proteomics analysis, and the differentially expressed proteins were subjected to Gene Ontology (GO) term enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Results A total of 26 differentially expressed proteins were identified between the lesion group and the normal group and between the peri-lesion group and the normal group, including 8 up-regulated proteins and 18 down-regulated proteins. GO term enrichment analysis showed that these differentially expressed proteins were predominantly enriched in endoplasmic reticulum membrane (biological components), oxidoreductase activity (molecular function) and oxoacid metabolic process and monocarboxylic acid metabolic process (biological processes). KEGG pathway enrichment analysis revealed that the differentially expressed protein Acyl-CoA oxidase 1 (Acox1), which contributed to primary bile acid biosynthesis during the fatty acid oxidation, was involved in peroxisome signaling pathway, and the differentially expressed protein fatty acid binding protein 1 (Fabp1), which contributed to fatty acid transport, was involved in the peroxisome proliferator-activated receptor (PPAR) signaling pathway. Conclusion Differentially expressed proteins are identified in the liver specimens between mouse models of CE and normal mice, and some differentially expressed proteins may serve as potential drug targets for CE.

SELECTION OF CITATIONS
SEARCH DETAIL