Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
China Pharmacy ; (12): 2608-2612, 2023.
Article in Chinese | WPRIM | ID: wpr-997794

ABSTRACT

OBJECTIVE To optimize the molding process of Shuangye pipa granules based on the concept of quality by design (QbD) and analyze its physical fingerprint. METHODS The dry extract of Shuangye pipa granules was used as the main drug. The retention rate of total flavonoid, moisture absorption rate, dissolution rate, angle of repose and molding rate of the granules were selected as evaluation indexes. The single-factor test combined with the entropy weight method and Box-Behnken response surface design was used to optimize the molding process, and validation test was conducted. The physical fingerprints of 10 batches of Shuangye pipa granules prepared by the optimal process were comprehensively analyzed by eight secondary physical indexes (relative homogeneity, moisture, moisture absorption rate, Hausner ratio, angle of repose, bulk density, tap density and porosity). RESULTS The optimal molding process of Shuangye pipa granules was as follows: soluble starch-maltodextrin-mannitol was 1∶1∶1 (m/m/m), 95% ethanol was as wetting agent and the amount of it was 37%, the drug-assisted ratio was 1∶0.8 (m/m), the drying temperature was 59 ℃, drying time was 28 min. The results of 3 validation tests showed that the average comprehensive score was 0.879 6, the RSD of which with prediction value (0.881 9 score) was 1.97%. The similarity between the physical fingerprints of 10 batches of Shuangye pipa granules and the control physical fingerprint was higher than 0.99. CONCLUSIONS The optimized molding process of Shuangye pipa granules is stable and feasible, and the physical property of Shuangye pipa granules is stable and controllable.

SELECTION OF CITATIONS
SEARCH DETAIL