Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Article in Chinese | WPRIM | ID: wpr-743217

ABSTRACT

Objective To develop a new type of blast injury simulator to establish a mouse model of brain blast injury and study its damage mechanism. Methods Thirty healthy Kunming mice were randomly(random number) divided into the normal control group and brain blast injury model (TBI) group. A mouse model of traumatic brain injury was prepared by a self-developed explosive injury simulator. Morris water maze, Evans blue experiment and HE staining were used to observe the effects of shockwave exposure on spatial memory, blood-brain barrier, and pathological changes of brain tissues. T test was used for statistical analysis. Western blot method was used for detecting expression of brain injury markers Tau, S100β, Choline, inflammatory factors IL-1β, IL-4, IL-6, IL-10, NF-κB, apoptosis factors Bcl-2, Bax, Caspase3, and oxide protein stress-related factors IREα, MDA5, COX2 SOD1, and SOD2. Results Compared with the normal control group, (11.2±2.1) s, the time of searching platform in the TBI group was (54.6±8.4) s, was significantly longer (t=-19.330, P<0.05), and the EB exudation in the TBI group was 3.22 times (t=-13.903, P<0.05). Pathological staining revealed neuronal damage in the hippocampus, and TBI induced brain injury markers Tau(0.26±0.03 vs 0.46±0.04,t=-9.788, P<0.05), S100β(0.54±0.03 vs 0.74±0.02,t=-12.433, P<0.05) and Choline(0.54±0.05 vs 0.80±0.04, t=-7.970, P<0.05), inflammatory cytokines IL-1β(0.22±0.04 vs 0.31±0.05,t=-3.431, P<0.05), IL-4(0.65±0.02 vs 0.97±0.03, t=-18.927, P<0.05), IL-6(0.88±0.05 vs 1.07±0.08, t=-9.488, P<0.05) and NF-κB(0.80±0.06 vs 1.03±0.07,t=-4.507, P<0.05), and pro-apoptotic cytokines Bax(0.66±0.04 vs 0.78±0.04, t=-13.007, P<0.05) and Caspase3(0.44±0.03 vs 0.60±0.05, t=-4.472, P<0.05), oxidative stress-related factor pro IREα(0.72±0.06 vs 1.07±0.04, t=-9.665, P<0.05), MDA5(0.47±0.02 vs 0.77±0.02, t=-23.678, P<0.05) and expression of COX2(0.70±0.07 vs 0.86±0.02, t=-6.421, P<0.05), inhibition of inflammation inhibitory factor IL-10(1.14±0.06 vs 0.74±0.07, t=13.729, P<0.05), inhibition of apoptosis factors Bcl-2(0.72±0.05 vs 0.46±0.02, t=11.491, P<0.05) and inhibition of oxidative stress factors SOD1(1.17±0.05 vs 0.99±0.01, t=7.731, P<0.05) and SOD2(0.81±0.05 vs 0.61±0.04, t=10.257, P<0.05) expression. Conclusions The brain injury induced by blast exposure can induce spatial learning and memory loss, blood brain barrier disruption, neuronal damage hippocampus in mice, and promote the expression of brain injury markers, induce inflammation, oxidative stress and apoptosis. The self-developed explosive shock simulator successfully establishes a mouse brain blast injury model.

2.
Military Medical Sciences ; (12): 668-671, 2016.
Article in Chinese | WPRIM | ID: wpr-498341

ABSTRACT

Objective To evaluate conventional ultrasound combined with real-time elastography in differential diagnosis of metastatic axillary lymph nodes of breast cancer with a logistic regression model.Methods Conventional ultrasound and real-time elastography were performed in 112 breast cancer patients with 113 axillary lymph nodes.All the cases were confirmed with pathological examinations after surgery. A binary logistic regression model based on ultrasonographic features was developed.A receiver operator characteristic ( ROC) curve was constructed to assess the performance of the model.Results There were 28 nodes with no metastasis and 85 with metastasis in a total of 113 axillary lymph nodes.Three ultrasonographic features including the elastic strain ratio(SR), elastic score and shape were finally selected into the logistic regression model .The correct rate of the logistic regression model for predicting axillary lymph node metastasis was 93.8%, and the area under ROC curve was 0.962.Conclusion The binary classification logistic regression model has a good diagnostic efficacy in the diagnosis of benign and malignant axillary lymph nodes,while real-time elastography can improve the accuracy of conventional ultrasound in the diagnosis of axillary lymph nodes.

SELECTION OF CITATIONS
SEARCH DETAIL