ABSTRACT
Neuropathic pain is a chronic disease that severely afflicts the life and emotional status of patients, but currently available treatments are often ineffective. Novel therapeutic targets for the alleviation of neuropathic pain are urgently needed. Rhodojaponin VI, a grayanotoxin from Rhododendron molle, showed remarkable antinociceptive efficacy in models of neuropathic pain, but its biotargets and mechanisms are unknown. Given the reversible action of rhodojaponin VI and the narrow range over which its structure can be modified, we perforwmed thermal proteome profiling of the rat dorsal root ganglion to determine the protein target of rhodojaponin VI. N-Ethylmaleimide-sensitive fusion (NSF) was confirmed as the key target of rhodojaponin VI through biological and biophysical experiments. Functional validation showed for the first time that NSF facilitated trafficking of the Cav2.2 channel to induce an increase in Ca2+ current intensity, whereas rhodojaponin VI reversed the effects of NSF. In conclusion, rhodojaponin VI represents a unique class of analgesic natural products targeting Cav2.2 channels via NSF.
ABSTRACT
Acute pain is a common complication after injury of a peripheral nerve but the underlying mechanism is obscure. We established a model of acute neuropathic pain via pulling a pre-implanted suture loop to transect a peripheral nerve in awake rats. The tibial (both muscular and cutaneous), gastrocnemius-soleus (muscular only), and sural nerves (cutaneous only) were each transected. Transection of the tibial and gastrocnemius-soleus nerves, but not the sural nerve immediately evoked spontaneous pain and mechanical allodynia in the skin territories innervated by the adjacent intact nerves. Evans blue extravasation and cutaneous temperature of the intact skin territory were also significantly increased. In vivo electrophysiological recordings revealed that injury of a muscular nerve induced mechanical hypersensitivity and spontaneous activity in the nociceptive C-neurons in adjacent intact nerves. Our results indicate that injury of a muscular nerve, but not a cutaneous nerve, drives acute neuropathic pain.