Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Biomolecules & Therapeutics ; : 384-391, 2021.
Article in English | WPRIM | ID: wpr-889597

ABSTRACT

Currently, the expanding recreational use of synthetic cannabinoids (SCBs) threatens public health. SCBs produce psychoactive effects similar to those of tetrahydrocannabinol, the main component of cannabis, and additionally induce unexpected pharmacological side effects. SCBs are falsely advertised as legal and safe, but in reality, SCB abuse has been reported to cause acute intoxication and addictive disorders. However, because of the lack of scientific evidence to elucidate their dangerous pharmacological effects, SCBs are weakly regulated and continue to circulate in illegal drug markets. In the present study, the intravenous self-administration (IVSA) paradigm was used to evaluate the abuse potential of three SCBs (AM-1248, CB-13, and PB-22) in rats. All three SCBs maintained IVSA with a large number of infusions and active lever presses, demonstrating their reinforcing effects.The increase of active lever presses was particularly significant during the early IVSA sessions, indicating the reinforcementenhancing effects of the SCBs (AM-1248 and CB-13). The number of inactive lever presses was significantly higher in the SCB groups (AM-1248 and CB-13) than that in the vehicle group, indicating their impulsive effects. In summary, these results demonstrated that SCBs have distinct pharmacological properties and abuse potential.

2.
Biomolecules & Therapeutics ; : 384-391, 2021.
Article in English | WPRIM | ID: wpr-897301

ABSTRACT

Currently, the expanding recreational use of synthetic cannabinoids (SCBs) threatens public health. SCBs produce psychoactive effects similar to those of tetrahydrocannabinol, the main component of cannabis, and additionally induce unexpected pharmacological side effects. SCBs are falsely advertised as legal and safe, but in reality, SCB abuse has been reported to cause acute intoxication and addictive disorders. However, because of the lack of scientific evidence to elucidate their dangerous pharmacological effects, SCBs are weakly regulated and continue to circulate in illegal drug markets. In the present study, the intravenous self-administration (IVSA) paradigm was used to evaluate the abuse potential of three SCBs (AM-1248, CB-13, and PB-22) in rats. All three SCBs maintained IVSA with a large number of infusions and active lever presses, demonstrating their reinforcing effects.The increase of active lever presses was particularly significant during the early IVSA sessions, indicating the reinforcementenhancing effects of the SCBs (AM-1248 and CB-13). The number of inactive lever presses was significantly higher in the SCB groups (AM-1248 and CB-13) than that in the vehicle group, indicating their impulsive effects. In summary, these results demonstrated that SCBs have distinct pharmacological properties and abuse potential.

3.
Biomolecules & Therapeutics ; : 127-134, 2021.
Article in English | WPRIM | ID: wpr-874327

ABSTRACT

Neuroinflammation—a common pathological feature of neurodegenerative disorders such as Alzheimer’s disease—is mediated by microglial activation. Thus, inhibiting microglial activation is vital for treating various neurological disorders. 7,3’,4’-Trihydroxyisoflavone (THIF)—a secondary metabolite of the soybean compound daidzein—possesses antioxidant and anticancer properties. However, the effects of 7,3’,4’-THIF on microglial activation have not been explored. In this study, antineuroinflammatory effects of 7,3’,4’-THIF in lipopolysaccharide (LPS)-stimulated BV2 microglial cells were examined. 7,3’,4’-THIF significantly suppressed the production of the proinflammatory mediators nitric oxide (NO), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) as well as of the proinflammatory cytokine interleukin-6 (IL-6) in LPS-stimulated BV2 microglial cells. Moreover, 7,3’,4’-THIF markedly inhibited reactive oxygen species (ROS) generation. Western blotting revealed that 7,3’,4’-THIF diminished LPS-induced phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), glycogen synthase kinase-3β (GSK-3β), and nuclear factor kappa B (NF-κB). Overall, 7,3’,4’-THIF exerts antineuroinflammatory effects against LPSinduced microglial activation by suppressing mitogen-activated protein kinase (MAPK) and NF-κB signaling, ultimately reducing proinflammatory responses. Therefore, these antineuroinflammatory effects of 7,3’,4’-THIF suggest its potential as a therapeutic agent for neurodegenerative disorders.

4.
Biomolecules & Therapeutics ; : 363-372, 2019.
Article in English | WPRIM | ID: wpr-763027

ABSTRACT

Daidzein isolated from soybean (Glycine max) has been widely studied for its antioxidant and anti-inflammatory activities. However, the protective effects of 7,8,4′-trihydroxyisoflavone (THIF), a major metabolite of daidzein, on 6-hydroxydopamine (OHDA)-induced neurotoxicity are not well understood. In the current study, 7,8,4′-THIF significantly inhibited neuronal cell death and lactate dehydrogenase (LDH) release induced by 6-OHDA in SH-SY5Y cells, which were used as an in vitro model of Parkinson's disease (PD). Moreover, pretreatment with 7,8,4′-THIF significantly increased the levels of superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) and decreased malondialdehyde (MDA) activity in 6-OHDA-induced SH-SY5Y cells. In addition, 7,8,4′-THIF significantly recovered 6-OHDA-induced cleaved caspase-3, cleaved caspase-9, cleaved poly-ADP-ribose polymerase (PARP), increased Bax, and decreased Bcl-2 levels. Additionally, 7,8,4′-THIF significantly restored the expression levels of phosphorylated c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase 1/2 (ERK 1/2), phosphatidylinositol 3-kinases (PI3K)/Akt, and glycogen synthase kinase-3 beta (GSK-3β) in 6-OHDA-induced SH-SY5Y cells. Further, 7,8,4′-THIF significantly increased the reduced tyrosine hydroxylase (TH) level induced by 6-OHDA in SH-SY5Y cells. Collectively, these results suggest that 7,8,4′-THIF protects against 6-OHDA-induced neuronal cell death in cellular PD models. Also, these effects are mediated partly by inhibiting activation of the MAPK and PI3K/Akt/GSK-3β pathways.


Subject(s)
Apoptosis , Caspase 3 , Caspase 9 , Catalase , Cell Death , Glutathione , Glycogen Synthase , In Vitro Techniques , JNK Mitogen-Activated Protein Kinases , L-Lactate Dehydrogenase , Malondialdehyde , Neurons , Oxidopamine , Parkinson Disease , Phosphatidylinositol 3-Kinases , Phosphotransferases , Protein Kinases , Glycine max , Superoxide Dismutase , Tyrosine 3-Monooxygenase
5.
Biomolecules & Therapeutics ; : 109-114, 2018.
Article in English | WPRIM | ID: wpr-713586

ABSTRACT

Liquiritigenin (LQ) is a flavonoid that can be isolated from Glycyrrhiza radix. It is frequently used as a tranditional oriental medicine herbal treatment for swelling and injury and for detoxification. However, the effects of LQ on cognitive function have not been fully explored. In this study, we evaluated the memory-enhancing effects of LQ and the underlying mechanisms with a focus on the N-methyl-D-aspartic acid receptor (NMDAR) in mice. Learning and memory ability were evaluated with the Y-maze and passive avoidance tests following administration of LQ. In addition, the expression of NMDAR subunits 1, 2A, and 2B; postsynaptic density-95 (PSD-95); phosphorylation of Ca2+/calmodulin-dependent protein kinase II (CaMKII); phosphorylation of extracellular signal-regulated kinase 1/2 (ERK 1/2); and phosphorylation of cAMP response element binding (CREB) proteins were examined by Western blot. In vivo, we found that treatment with LQ significantly improved memory performance in both behavioral tests. In vitro, LQ significantly increased NMDARs in the hippocampus. Furthermore, LQ significantly increased PSD-95 expression as well as CaMKII, ERK, and CREB phosphorylation in the hippocampus. Taken together, our results suggest that LQ has cognition enhancing activities and that these effects are mediated, in part, by activation of the NMDAR and CREB signaling pathways.


Subject(s)
Animals , Mice , Behavior Rating Scale , Blotting, Western , Calcium-Calmodulin-Dependent Protein Kinase Type 2 , Cognition , Glycyrrhiza , Hippocampus , In Vitro Techniques , Learning , Medicine, East Asian Traditional , Memory , N-Methylaspartate , Phosphorylation , Phosphotransferases , Protein Kinases , Receptors, N-Methyl-D-Aspartate , Response Elements
6.
Biomolecules & Therapeutics ; : 432-438, 2018.
Article in English | WPRIM | ID: wpr-716599

ABSTRACT

Worldwide, caffeine is among the most commonly used stimulatory substances. Unfortunately, significant caffeine consumption is associated with several adverse effects, ranging from sleep disturbances (including insomnia) to cardiovascular problems. This study investigates whether treatment with the Evodia rutaecarpa aqueous extract (ERAE) from berries and its major molecular component, evodiamine, can reduce the adverse caffeine-induced sleep-related and excitation effects. We combined measurements from the pentobarbital-induced sleep test, the open field test, and the locomotor activity test in mice that had been dosed with caffeine. We found that ERAE and evodiamine administration reduced the degree of caffeine-induced sleep disruption during the sleep test. Additionally, we found that evodiamine significantly inhibits caffeine-induced excitation during the open field test, as well as decreasing hyperlocomotion in the locomotor activity test. Additional in vitro experiments showed that caffeine administration decreased the expression of γ-aminobutyric acid (GABA)(A) receptor subunits in the mouse hypothalamus. However, evodiamine treatment significantly reversed this expression reduction. Taken together, our results demonstrate that ERAE and its major compound, evodiamine, provide an excellent candidate for the treatment or prevention of caffeine-induced sleep disturbances and excitatory states, and that the mechanism of these beneficial effects acts, at least in part, through the GABA(A)-ergic system.


Subject(s)
Animals , Mice , Caffeine , Evodia , Fruit , Hypothalamus , In Vitro Techniques , Motor Activity
7.
Biomolecules & Therapeutics ; : 268-282, 2016.
Article in English | WPRIM | ID: wpr-51946

ABSTRACT

In the present study, we investigated the anti-inflammatory properties of Eucommia ulmoides Oliv. Bark. (EUE) in lipopolysaccharide (LPS)-stimulated microglial BV-2 cells and found that EUE inhibited LPS-mediated up-regulation of pro-inflammatory response factors. In addition, EUE inhibited the elevated production of pro-inflammatory cytokines, mediators, and reactive oxygen species (ROS) in LPS-stimulated BV-2 microglial cells. Subsequent mechanistic studies revealed that EUE suppressed LPS-induced phosphorylation of mitogen-activated protein kinases (MAPKs), phosphoinositide-3-kinase (PI3K)/Akt, glycogen synthase kinase-3β (GSK-3β), and their downstream transcription factor, nuclear factor-kappa B (NF-κB). EUE also blocked the nuclear translocation of NF-κB and inhibited its binding to DNA. We next demonstrated that EUE induced the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) and upregulated heme oxygenase-1 (HO-1) expression. We determined that the significant up-regulation of HO-1 expression by EUE was a consequence of Nrf2 nuclear translocation; furthermore, EUE increased the DNA binding of Nrf2. In contrast, zinc protoporphyrin (ZnPP), a specific HO-1 inhibitor, blocked the ability of EUE to inhibit NO and PGE2 production, indicating the vital role of HO-1. Overall, our results indicate that EUE inhibits pro-inflammatory responses by modulating MAPKs, PI3K/Akt, and GSK-3β, consequently suppressing NF-κB activation and inducing Nrf2-dependent HO-1 activation.


Subject(s)
Cytokines , Dinoprostone , DNA , Eucommiaceae , Glycogen Synthase , Heme Oxygenase-1 , Mitogen-Activated Protein Kinases , Phosphorylation , Reactive Oxygen Species , Transcription Factors , Up-Regulation , Zinc
8.
Biomolecules & Therapeutics ; : 543-551, 2016.
Article in English | WPRIM | ID: wpr-201374

ABSTRACT

This study was designed to evaluate the pharmacological effects of Vaccinium bracteatum Thunb. methanol extract (VBME) on microglial activation and to identify the underlying mechanisms of action of these effects. The anti-inflammatory properties of VBME were studied using lipopolysaccharide (LPS)-stimulated BV-2 microglial cells. We measured the production of nitric oxide (NO), inducible NO synthase (iNOS), cyclooxygenase (COX)-2, prostaglandin E₂ (PGE₂), tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and interleukin-6 (IL-6) as inflammatory parameters. We also examined the effect of VBME on intracellular reactive oxygen species (ROS) production and the activity of nuclear factor-kappa B p65 (NF-κB p65). VBME significantly inhibited LPS-induced production of NO and PGE₂ and LPS-mediated upregulation of iNOS and COX-2 expression in a dose-dependent manner; importantly, VBME was not cytotoxic. VBME also significantly reduced the generation of the pro-inflammatory cytokines TNF-α, IL-1β, and IL-6. In addition, VBME significantly dampened intracellular ROS production and suppressed NF-κB p65 translocation by blocking IκB-α phosphorylation and degradation in LPS-stimulated BV2 cells. Our findings indicate that VBME inhibits the production of inflammatory mediators in BV-2 microglial cells by suppressing NF-κB signaling. Thus, VBME may be useful in the treatment of neurodegenerative diseases due to its ability to inhibit inflammatory mediator production in activated BV-2 microglial cells.


Subject(s)
Cytokines , Interleukin-1beta , Interleukin-6 , Methanol , Neurodegenerative Diseases , Nitric Oxide , Nitric Oxide Synthase , Phosphorylation , Prostaglandin-Endoperoxide Synthases , Reactive Oxygen Species , Tumor Necrosis Factor-alpha , Up-Regulation , Vaccinium
9.
Biomolecules & Therapeutics ; : 115-122, 2016.
Article in English | WPRIM | ID: wpr-23491

ABSTRACT

Sleep, which is an essential part of human life, is modulated by neurotransmitter systems, including gamma-aminobutyric acid (GABA) and dopamine signaling. However, the mechanisms that initiate and maintain sleep remain obscure. In this study, we investigated the relationship between melatonin (MT) and dopamine D2-like receptor signaling in pentobarbital-induced sleep and the intracellular mechanisms of sleep maintenance in the cerebral cortex. In mice, pentobarbital-induced sleep was augmented by intraperitoneal administration of 30 mg/kg MT. To investigate the relationship between MT and D2-like receptors, we administered quinpirole, a D2-like receptor agonist, to MT- and pentobarbital-treated mice. Quinpirole (1 mg/kg, i.p.) increased the duration of MT-augmented sleep in mice. In addition, locomotor activity analysis showed that neither MT nor quinpirole produced sedative effects when administered alone. In order to understand the mechanisms underlying quinpirole-augmented sleep, we measured protein levels of mitogen-activated protein kinases (MAPKs) and cortical protein kinases related to MT signaling. Treatment with quinpirole or MT activated extracellular-signal-regulated kinase 1 and 2 (ERK1/2), p38 MAPK, and protein kinase C (PKC) in the cerebral cortex, while protein kinase A (PKA) activation was not altered significantly. Taken together, our results show that quinpirole increases the duration of MT-augmented sleep through ERK1/2, p38 MAPK, and PKC signaling. These findings suggest that modulation of D2-like receptors might enhance the effect of MT on sleep.


Subject(s)
Animals , Humans , Mice , Cerebral Cortex , Cyclic AMP-Dependent Protein Kinases , Dopamine , gamma-Aminobutyric Acid , Hypnotics and Sedatives , Melatonin , Mitogen-Activated Protein Kinases , Motor Activity , Neurotransmitter Agents , p38 Mitogen-Activated Protein Kinases , Pentobarbital , Phosphotransferases , Protein Kinase C , Protein Kinases , Quinpirole
11.
Journal of Laboratory Medicine and Quality Assurance ; : 8-12, 2013.
Article in Korean | WPRIM | ID: wpr-225313

ABSTRACT

BACKGROUND: The Coapresta 2000 (Sekisui Medical Co., Japan) is a newly developed, fully automated coagulation analyzer that can perform clotting time assays using the synthetic substrate method and the latex turbidimetric method. In this study, we evaluated the analytical performance of the Coapresta 2000 for measuring prothrombin time (PT) and activated partial thromboplastin time (aPTT), and compared the results to those of the CA-7000 (Sysmex Co., Japan) and ACL-9000 (Instrumentation Laboratory, USA) analyzers. METHODS: The Coapresta 2000 was evaluated for its precision at measuring PT and aPTT in fresh normal plasma and fresh abnormal plasma. Three hundred venous blood specimens were collected in 3.2% sodium citrate tubes, and PT and aPTT results were compared among the Coapresta 2000, ACL-9000, and CA-7000 analyzers. RESULTS: The coefficients of variation of both intra- and inter-assays for the Coapresta 2000 were <5% for PT and aPTT in the normal and pathological ranges. The results obtained using the Coapresta 2000 analyzer correlated well with those obtained using the ACL-9000 analyzer (r in the range of 0.9799-0.9886) except for aPTT (r=0.7626) and with those obtained using the CA-7000 analyzer (r in the range of 0.8258 - 0.9735). CONCLUSIONS: The Coapresta 2000 provided satisfactory precision, and the results obtained correlated well with those obtained using the existing CA-7000 and ACL-9000 coagulation analyzers. We conclude that the Coapresta 2000 would be a useful analyzer for routine coagulation tests.


Subject(s)
Citrates , Citric Acid , Latex , Partial Thromboplastin Time , Plasma , Prothrombin Time , Sodium
SELECTION OF CITATIONS
SEARCH DETAIL