Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Add filters

Year range
Article in Chinese | WPRIM | ID: wpr-879109


The research on endophytes of medicinal plants mainly relies on the traditional culture and isolation methods. Because of their functions such as promoting host growth, improving stress resistance, promoting the accumulation of medicinal active ingredients or directly producing medicinal active ingredients, the endophytes of medicinal plants have gradually attracted wide attention. However, it was found that the strains isolated by traditional methods were not the true dominant endophytes of medicinal plants by comparing the results of traditional culture isolation with high-throughput sequencing. The blind and random nature of traditional methods leads to the lack of standards in terms of medium selection, culture time and interaction between species. On the contrary, high-throughput sequencing technology is an emerging molecular biology technology developed in recent decades. Due to its high resolution level and indepen-dent culture, it can be used for thorough analysis of the community structure and diversity of environmental microorganisms. Therefore, we proposed the strategy of using high-throughput sequencing technology to guide the traditional culture and isolation of endophytes from medicinal plants. Firstly, the endophytic structure and diversity of medicinal plants were completely clear by high-throughput sequencing technology, and the dominant endophytes of the host were unequivocal. Then according to the characteristics of each dominant endophytes design or query suitable medium for its growth to culture and isolation. Finally, the function of the isolates was studied. This method can prevent researchers from missing out on the important functional strains of the host, expand the research scope of endophytes of medicinal plants, and facilitate the in-depth excavation and utilization of endophytes of medicinal plants.

Endophytes/genetics , High-Throughput Nucleotide Sequencing , Plants, Medicinal , Research Design
Article in Chinese | WPRIM | ID: wpr-879005


Coptis chinensis is one of bulk traditional herbal medicines in China. In recent years, the occurrence of various diseases has caused great yield loss and quality reduction of C. chinensis, which has become an important threat of herbal medicine industry. Here we reviewed the symptoms, pathogens, epidemiology and control methods of 6 common diseases of C. chinensis including root rot, southern blight, violet root rot, leaf spot, powdery mildew, and anthracnose. This review aims at providing guidance for the disease diagnostic, pathogen identification, and control strategies of the diseases on C. chinensis, and facilitate the growth of traditional medicine industry.

Basidiomycota , China/epidemiology , Coptis , Plants, Medicinal
Article in Chinese | WPRIM | ID: wpr-827987


Numerous studies showed that the growth of medicinal plants in their native areas was simultaneously affected by abiotic stress combinations. Compared with single stress, plants have unique responses to a combination of different abiotic stresses and cannot be inferred directly from plants' responses to each individual stress. The effect of combined stresses on plants usually has three types of synergistic antagonism or independence. The secondary metabolism in the process of medicinal plant stress combination response also played a vital role, and environmental stresses can spur the accumulation of secondary metabolites, but under the stress combination, plants induce specific gene expression of key enzymes on secondary metabolic pathways, in turn, the accumulation of secondary metabolites against stress is formed. When plants are subjected to stress combination, the interaction of multiple signaling pathways makes it highly complex for plants to respond to stress combination. This paper summarized the effects of stress combination on physiological and secondary metabolism of medicinal plants, and discussed the related physiological, biochemical and molecular mechanisms. It provides theoretical basis for improving the adaptability of medicinal plants to adversity, improving the quality of Chinese medicinal materials, and further optimizing the cultivation of medicinal plants.

Gene Expression Regulation, Plant , Metabolic Networks and Pathways , Plants, Medicinal , Secondary Metabolism , Stress, Physiological
Article in Chinese | WPRIM | ID: wpr-827986


Intercropping farming system is one of the essence of traditional agriculture in China and one of the most common and basic patterns of modern ecological planting. Intercropping system uses the principle of species diversity to create reasonable interspecific interaction conditions with obvious productivity advantages. In this paper, the interspecies interaction is divided into aboveground and underground parts from the space view, and its influence and mechanism on the yield and secondary metabolites of medicinal plants are elaborated.The interspecific interaction in the aboveground part mainly introduces the distribution and utilization of space resources among plants. The interspecific interaction in the underground part mainly introduces the soil rhizosphere effect and related mediating factors, root exudates, soil microorganisms, root space structure and soil environmental factors. On the basis of understanding the mechanism of interspecific interaction, this paper further discusses the application of intercropping in traditional Chinese medicine ecological agriculture, taking the effective control of diseases and insect pests, the increase of medicinal material yield and the improvement of medicinal material quality as the benefit index, so as to seek better advantages of intercropping and provide ideas for the utilization of intercropping production mode in traditional Chinese medicine ecological agriculture.

Agriculture , China , Plants, Medicinal , Rhizosphere , Soil